Nonlinear Eigenvalues for a Quasilinear Elliptic System in Orlicz–Sobolev Spaces

被引:1
|
作者
Jorge Huentutripay
Raúl Manásevich
机构
[1] Universidad de los Lagos,Departamento de Ciencias Exactas
[2] Universidad de Chile,Departamento de Ingeniería Matemática, FCFM
关键词
Orlicz–Sobolev spaces; Nonlinear eigenvalue problems; Lagrange multiplier ruler; complementary system;
D O I
暂无
中图分类号
学科分类号
摘要
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{l}{ - \Delta _{\Phi _1 } u = \lambda (a_1 (x,u) + b(x)\gamma _1 (u)\Gamma_2 (v))\quad \text{in}\;\Omega ,} \\{ - \Delta _{\Phi _2 } v = \lambda (a_2 (x,v) + b(x)\Gamma _1 (u)\gamma_2 (v))\quad \hbox{in}\;\Omega ,} \\{u = v = 0\quad \hbox{on}\;\partial \Omega .} \\ \end{array} } \right.$$\end{document}We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C1.
引用
收藏
页码:901 / 929
页数:28
相关论文
共 50 条