Nonlinear Eigenvalues for a Quasilinear Elliptic System in Orlicz–Sobolev Spaces

被引:1
|
作者
Jorge Huentutripay
Raúl Manásevich
机构
[1] Universidad de los Lagos,Departamento de Ciencias Exactas
[2] Universidad de Chile,Departamento de Ingeniería Matemática, FCFM
关键词
Orlicz–Sobolev spaces; Nonlinear eigenvalue problems; Lagrange multiplier ruler; complementary system;
D O I
暂无
中图分类号
学科分类号
摘要
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{l}{ - \Delta _{\Phi _1 } u = \lambda (a_1 (x,u) + b(x)\gamma _1 (u)\Gamma_2 (v))\quad \text{in}\;\Omega ,} \\{ - \Delta _{\Phi _2 } v = \lambda (a_2 (x,v) + b(x)\Gamma _1 (u)\gamma_2 (v))\quad \hbox{in}\;\Omega ,} \\{u = v = 0\quad \hbox{on}\;\partial \Omega .} \\ \end{array} } \right.$$\end{document}We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C1.
引用
收藏
页码:901 / 929
页数:28
相关论文
共 50 条
  • [21] On some nonlinear elliptic problems in anisotropic Orlicz–Sobolev spaces
    Rabab Elarabi
    Badr Lahmi
    Hakima Ouyahya
    Advances in Operator Theory, 2023, 8
  • [22] A STRONGLY NONLINEAR ELLIPTIC PROBLEM IN ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 455 - 462
  • [23] Multiple solutions for a class of nonlocal quasilinear elliptic systems in Orlicz-Sobolev spaces
    Heidari, S.
    Razani, A.
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [24] Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3792 - 3814
  • [25] On some nonlinear elliptic problems in anisotropic Orlicz-Sobolev spaces
    Elarabi, Rabab
    Lahmi, Badr
    Ouyahya, Hakima
    ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [27] Existence of solutions to quasilinear elliptic equations in the Musielak-Orlicz-Sobolev spaces for unbounded domains
    Kozhevnikova, L. M.
    Kashnikova, A. P.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (04): : 621 - 643
  • [28] Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4441 - 4456
  • [29] Existence of ground state solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Liben Wang
    Xingyong Zhang
    Hui Fang
    Boundary Value Problems, 2017
  • [30] Existence of ground state solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    BOUNDARY VALUE PROBLEMS, 2017,