Nonlinear Eigenvalues for a Quasilinear Elliptic System in Orlicz–Sobolev Spaces

被引:1
|
作者
Jorge Huentutripay
Raúl Manásevich
机构
[1] Universidad de los Lagos,Departamento de Ciencias Exactas
[2] Universidad de Chile,Departamento de Ingeniería Matemática, FCFM
关键词
Orlicz–Sobolev spaces; Nonlinear eigenvalue problems; Lagrange multiplier ruler; complementary system;
D O I
暂无
中图分类号
学科分类号
摘要
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{l}{ - \Delta _{\Phi _1 } u = \lambda (a_1 (x,u) + b(x)\gamma _1 (u)\Gamma_2 (v))\quad \text{in}\;\Omega ,} \\{ - \Delta _{\Phi _2 } v = \lambda (a_2 (x,v) + b(x)\Gamma _1 (u)\gamma_2 (v))\quad \hbox{in}\;\Omega ,} \\{u = v = 0\quad \hbox{on}\;\partial \Omega .} \\ \end{array} } \right.$$\end{document}We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C1.
引用
收藏
页码:901 / 929
页数:28
相关论文
共 50 条
  • [1] Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz-Sobolev spaces
    Huentutripay, Jorge
    Manasevich, Raul
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (04) : 901 - 929
  • [2] On quasilinear elliptic systems with growth conditions in Orlicz–Sobolev spaces
    Farah Balaadich
    Elhoussine Azroul
    São Paulo Journal of Mathematical Sciences, 2023, 17 : 994 - 1005
  • [3] Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces
    Allami Benyaiche
    Ismail Khlifi
    Positivity, 2021, 25 : 819 - 841
  • [4] Capacity Solution to a Nonlinear Elliptic Coupled System in Orlicz–Sobolev Spaces
    H. Moussa
    F. Ortegón Gallego
    M. Rhoudaf
    Mediterranean Journal of Mathematics, 2020, 17
  • [5] On quasilinear elliptic systems with growth conditions in Orlicz-Sobolev spaces
    Balaadich, Farah
    Azroul, Elhoussine
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 994 - 1005
  • [6] On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting
    M. García-Huidobro
    V.K. Le
    R. Manásevich
    K. Schmitt
    Nonlinear Differential Equations and Applications NoDEA, 1999, 6 : 207 - 225
  • [7] On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting
    Garcia-Huidobro, M.
    Le, V. K.
    Manasevich, R.
    Schmitt, K.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02): : 207 - 225
  • [8] NONLINEAR PARABOLIC-ELLIPTIC SYSTEM IN MUSIELAK-ORLICZ-SOBOLEV SPACES
    Ortegon Gallego, Francisco
    Rhoudaf, Mohamed
    Sabiki, Hajar
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [9] Capacity Solution to a Nonlinear Elliptic Coupled System in Orlicz-Sobolev Spaces
    Moussa, H.
    Ortegon Gallego, F.
    Rhoudaf, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [10] Sobolev-Dirichlet problem for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces
    Benyaiche, Allami
    Khlifi, Ismail
    POSITIVITY, 2021, 25 (03) : 819 - 841