Analysis of general power counting rules in effective field theory

被引:0
|
作者
Belen Gavela
Elizabeth E. Jenkins
Aneesh V. Manohar
Luca Merlo
机构
[1] Universidad Autónoma de Madrid,Instituto de Física Teórica, IFT
[2] University of California at San Diego,UAM/CSIC
[3] CERN TH Division,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive the general counting rules for a quantum effective field theory (EFT) in d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT). The relation between Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} and f is generalized to d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. We show that the naive dimensional analysis 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\pi $$\end{document} counting is related to ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} counting. The EFT counting rules are applied to χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.
引用
收藏
相关论文
共 50 条
  • [41] Effective-field theory analysis of the τ- → η(′)π-ντ, decays
    Garces, E. A.
    Hernandez Villanueva, M.
    Lopez Castro, G.
    Roig, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [42] Effective field theory analysis of Higgs naturalness
    Bar-Shalom, Shaouly
    Soni, Amarjit
    Wudka, Jose
    PHYSICAL REVIEW D, 2015, 92 (01)
  • [43] Effective-field theory analysis of the τ− → η(′)π−ντ decays
    E.A. Garcés
    M. Hernández Villanueva
    G. López Castro
    P. Roig
    Journal of High Energy Physics, 2017
  • [45] Consistency of effective field theory analyses of the BOSS power spectrum
    Simon, Theo
    Zhang, Pierre
    Poulin, Vivian
    Smith, Tristan L.
    PHYSICAL REVIEW D, 2023, 107 (12)
  • [46] Lyman alpha forest power spectrum in effective field theory
    Ivanov, Mikhail M.
    PHYSICAL REVIEW D, 2024, 109 (02)
  • [47] Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
    Burgess, Cliff P.
    LIVING REVIEWS IN RELATIVITY, 2004, 7
  • [48] Testing effective field theory with the most general neutron decay correlations
    Seng, Chien-Yeah
    PHYSICAL REVIEW D, 2024, 109 (07)
  • [49] Quantum gravity in everyday life: General relativity as an effective field theory
    Burgess C.P.
    Living Reviews in Relativity, 2004, 7 (1)
  • [50] Sum rules for magnetic moments and polarizabilities in QED and chiral effective-field theory
    Holstein, BR
    Pascalutsa, V
    Vanderhaeghen, M
    PHYSICAL REVIEW D, 2005, 72 (09):