Analysis of general power counting rules in effective field theory

被引:0
|
作者
Belen Gavela
Elizabeth E. Jenkins
Aneesh V. Manohar
Luca Merlo
机构
[1] Universidad Autónoma de Madrid,Instituto de Física Teórica, IFT
[2] University of California at San Diego,UAM/CSIC
[3] CERN TH Division,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive the general counting rules for a quantum effective field theory (EFT) in d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT). The relation between Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} and f is generalized to d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. We show that the naive dimensional analysis 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\pi $$\end{document} counting is related to ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} counting. The EFT counting rules are applied to χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.
引用
收藏
相关论文
共 50 条
  • [31] Power functional theory for active Brownian particles: General formulation and power sum rules
    Krinninger, Philip
    Schmidt, Matthias
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (07):
  • [32] Black Holes in an Effective Field Theory Extension of General Relativity
    Cardoso, Vitor
    Kimura, Masashi
    Maselli, Andrea
    Senatore, Leonardo
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)
  • [33] General neutrino interactions from an effective field theory perspective
    Bischer, Ingolf
    Rodejohann, Werner
    NUCLEAR PHYSICS B, 2019, 947
  • [34] Constructing the general partial wave and renormalization in effective field theory
    Shu, Jing
    Xiao, Ming-Lei
    Zheng, Yu-Hui
    PHYSICAL REVIEW D, 2023, 107 (09)
  • [35] Spin effects in the effective quantum field theory of general relativity
    Ross, Andreas
    Holstein, Barry R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (25) : 6973 - 6978
  • [36] The 1S0 channel of proton-proton scattering in new chiral effective field theory power counting
    Behzadmoghaddam, B.
    Radin, M.
    Bayegan, S.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [37] Sum rules in the standard model effective field theory from helicity amplitudes
    Jiayin Gu
    Lian-Tao Wang
    Journal of High Energy Physics, 2021
  • [38] Sum rules and spin-dependent polarizabilities of the deuteron in effective field theory
    Ji, XD
    Li, YC
    PHYSICS LETTERS B, 2004, 591 (1-2) : 76 - 82
  • [39] Smef tFR - Feynman rules generator for the Standard Model Effective Field Theory
    Dedes, A.
    Paraskevas, M.
    Rosiek, J.
    Suxho, K.
    Trifyllis, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 247
  • [40] Sum rules in the standard model effective field theory from helicity amplitudes
    Gu, Jiayin
    Wang, Lian-Tao
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)