Analysis of general power counting rules in effective field theory

被引:0
|
作者
Belen Gavela
Elizabeth E. Jenkins
Aneesh V. Manohar
Luca Merlo
机构
[1] Universidad Autónoma de Madrid,Instituto de Física Teórica, IFT
[2] University of California at San Diego,UAM/CSIC
[3] CERN TH Division,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive the general counting rules for a quantum effective field theory (EFT) in d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT). The relation between Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} and f is generalized to d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. We show that the naive dimensional analysis 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\pi $$\end{document} counting is related to ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} counting. The EFT counting rules are applied to χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.
引用
收藏
相关论文
共 50 条
  • [21] Perturbative Power Counting, Lowest-Index Operators and Their Renormalization in Standard Model Effective Field Theory
    Liao, Yi
    Ma, Xiao-Dong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (03) : 285 - 290
  • [22] Power counting in non-relativistic effective field theories
    Luke, M
    TOWARD THE THEORY OF EVERYTHING: MRST '98, 1998, 452 : 91 - 100
  • [23] Power counting in non-relativistic effective field theories
    Luke, M
    NUCLEAR PHYSICS WITH EFFECTIVE FIELD THEORY, 1998, 6 : 47 - 58
  • [24] Linearized group field theory and power-counting theorems
    Ben Geloun, Joseph
    Krajewski, Thomas
    Magnen, Jacques
    Rivasseau, Vincent
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (15)
  • [25] Vacuum energy in the effective field theory of general relativity
    Gegelia, J.
    Meissner, Ulf-G.
    PHYSICAL REVIEW D, 2019, 100 (04):
  • [26] Perturbation theory, effective field theory, and oscillations in the power spectrum
    Vlah, Zvonimir
    Seljak, Uros
    Chu, Man Yat
    Feng, Yu
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (03):
  • [27] Vacuum energy in the effective field theory of general relativity with a scalar field
    Epelbaum, E.
    Gegelia, J.
    Meissner, Ulf-G.
    Neuhaus, L.
    PHYSICAL REVIEW D, 2024, 110 (04)
  • [28] Counting general power residues
    Seraj, Samer
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) : 730 - 743
  • [29] Feynman rules for the Standard Model Effective Field Theory in Rξ-gauges
    Dedes, A.
    Materkowska, W.
    Paraskevas, M.
    Rosiek, J.
    Suxho, K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06):
  • [30] Feynman rules for the Standard Model Effective Field Theory in Rξ-gauges
    A. Dedes
    W. Materkowska
    M. Paraskevas
    J. Rosiek
    K. Suxho
    Journal of High Energy Physics, 2017