Analysis of general power counting rules in effective field theory

被引:0
|
作者
Belen Gavela
Elizabeth E. Jenkins
Aneesh V. Manohar
Luca Merlo
机构
[1] Universidad Autónoma de Madrid,Instituto de Física Teórica, IFT
[2] University of California at San Diego,UAM/CSIC
[3] CERN TH Division,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive the general counting rules for a quantum effective field theory (EFT) in d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT). The relation between Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} and f is generalized to d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}$$\end{document} dimensions. We show that the naive dimensional analysis 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\pi $$\end{document} counting is related to ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} counting. The EFT counting rules are applied to χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.
引用
收藏
相关论文
共 50 条
  • [1] Analysis of general power counting rules in effective field theory
    Gavela, Belen
    Jenkins, Elizabeth E.
    Manohar, Aneesh V.
    Merlo, Luca
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (09):
  • [2] Power counting in nuclear effective field theory
    Valderrama, M. Pavon
    Chiral Symmetry in Hadrons and Nuclei, 2015, : 165 - 168
  • [3] Power counting and effective field theory for charmonium
    Fleming, S
    Rothstein, IZ
    Leibovich, AK
    PHYSICAL REVIEW D, 2001, 64 (03):
  • [4] Power counting for and symmetries of the effective field theory for NN interactions
    Wise, HB
    NUCLEAR PHYSICS WITH EFFECTIVE FIELD THEORY II, 2000, 9 : 124 - 135
  • [5] Power counting for nuclear forces in chiral effective field theory
    Long, Bingwei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2016, 25 (05)
  • [7] Power counting in chiral effective field theory and nuclear binding
    Yang, C-J
    Ekstrom, A.
    Forssen, C.
    Hagen, G.
    PHYSICAL REVIEW C, 2021, 103 (05)
  • [8] Power counting regime of chiral effective field theory and beyond
    Hall, J. M. M.
    Leinweber, D. B.
    Young, R. D.
    PHYSICAL REVIEW D, 2010, 82 (03):
  • [9] Power Counting of Contact-Range Currents in Effective Field Theory
    Valderrama, M. Pavon
    Phillips, D. R.
    PHYSICAL REVIEW LETTERS, 2015, 114 (08)
  • [10] Power counting for nuclear effective field theory and Wilsonian renormalization group
    Harada, Koji
    NUCLEAR PHYSICS A, 2007, 790 : 418C - 421C