Optimal binary LCD codes

被引:0
|
作者
Stefka Bouyuklieva
机构
[1] St. Cyril and St. Methodius University,Faculty of Mathematics and Informatics
来源
关键词
Optimal binary linear codes; LCD codes; 94B05; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
Linear complementary dual codes (shortly LCD codes) are codes whose intersections with their dual codes are trivial. These codes were first introduced by Massey in 1992. Nowadays, LCD codes are extensively studied in the literature and widely applied in data storage, cryptography, etc. In this paper, we prove some properties of binary LCD codes using their shortened and punctured codes. We also present some inequalities for the largest minimum weight dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} of binary LCD [n, k] codes for given length n and dimension k. Furthermore, we give two tables with the values of dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} for k≤32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 32$$\end{document} and n≤40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 40$$\end{document}, and two tables with classification results.
引用
收藏
页码:2445 / 2461
页数:16
相关论文
共 50 条
  • [41] Binary linear codes that are optimal for error correction
    Klove, T.
    General Theory of Information Transfer and Combinatorics, 2006, 4123 : 1081 - 1083
  • [42] BIT PROBABILITIES OF OPTIMAL BINARY SOURCE CODES
    MONTGOMERY, BL
    DIAMOND, H
    KUMAR, BVKV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1446 - 1450
  • [43] Optimal binary linear codes of length ≤30
    Jaffe, DB
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 135 - 155
  • [44] Optimal binary linear codes of length ≤30
    Jaffe, DB
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 17 - 17
  • [45] Optimal binary one-ended codes
    Kukorelly, Z
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) : 2125 - 2132
  • [46] On locality of binary distance-optimal codes
    Yang, Ruipan
    Li, Ruihu
    Fu, Qiang
    Yang, Sen
    Rao, Yi
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (01): : 49 - 69
  • [47] The simplex codes are not optimal for binary symmetric channels
    Helleseth, T
    Klove, T
    Levenshtein, VI
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 161 - 161
  • [48] Optimal Binary Linear Complementary Pairs of Codes
    Whan-Hyuk Choi
    Cem Güneri
    Jon-Lark Kim
    Ferruh Özbudak
    Cryptography and Communications, 2023, 15 : 469 - 486
  • [49] On locality of binary distance-optimal codes
    Ruipan Yang
    Ruihu Li
    Qiang Fu
    Sen Yang
    Yi Rao
    Cryptography and Communications, 2024, 16 : 49 - 69
  • [50] Binary MDS Array Codes With Optimal Repair
    Hou, Hanxu
    Lee, Patrick P. C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) : 1405 - 1422