Optimal binary LCD codes

被引:0
|
作者
Stefka Bouyuklieva
机构
[1] St. Cyril and St. Methodius University,Faculty of Mathematics and Informatics
来源
关键词
Optimal binary linear codes; LCD codes; 94B05; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
Linear complementary dual codes (shortly LCD codes) are codes whose intersections with their dual codes are trivial. These codes were first introduced by Massey in 1992. Nowadays, LCD codes are extensively studied in the literature and widely applied in data storage, cryptography, etc. In this paper, we prove some properties of binary LCD codes using their shortened and punctured codes. We also present some inequalities for the largest minimum weight dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} of binary LCD [n, k] codes for given length n and dimension k. Furthermore, we give two tables with the values of dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} for k≤32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 32$$\end{document} and n≤40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 40$$\end{document}, and two tables with classification results.
引用
收藏
页码:2445 / 2461
页数:16
相关论文
共 50 条
  • [21] Optimal binary codes and binary construction of quantum codes
    Wang, Weiliang
    Fan, Yangyu
    Li, Ruihu
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (06) : 1024 - 1031
  • [22] On the classification of quaternary optimal Hermitian LCD codes
    Araya, Makoto
    Harada, Masaaki
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (04): : 833 - 847
  • [23] On the classification of quaternary optimal Hermitian LCD codes
    Makoto Araya
    Masaaki Harada
    Cryptography and Communications, 2022, 14 : 833 - 847
  • [24] LCD Cyclic Codes over ℤ4 and Binary Images
    Kai X.-S.
    Liao W.-J.
    1600, Chinese Institute of Electronics (49): : 2284 - 2288
  • [25] Binary and ternary LCD codes from projective spaces
    Seneviratne, Pani
    Melcher, Lauren
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (06)
  • [26] Locality of optimal binary codes
    Fu, Qiang
    Li, Ruihu
    Guo, Luobin
    Lv, Liangdong
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 371 - 394
  • [27] Binary LCD Codes and Self-Orthogonal Codes via Simplicial Complexes
    Wu, Yansheng
    Lee, Yoonjin
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (06) : 1159 - 1162
  • [28] New binary and ternary LCD codes from matrix-product codes
    Liu, Xiusheng
    Liu, Hualu
    Yu, Long
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (05): : 809 - 823
  • [29] Binary LCD Codes and Self-Orthogonal Codes From a Generic Construction
    Zhou, Zhengchun
    Li, Xia
    Tang, Chunming
    Ding, Cunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (01) : 16 - 27
  • [30] Binary LCD Codes Having an Automorphism of Odd Prime Order
    Bouyuklieva, Stefka
    Russeva, Radka
    PROCEEDINGS OF THE 2020 SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT 2020): PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ACCT 2020, 2020, : 32 - 36