Optimal binary LCD codes

被引:0
|
作者
Stefka Bouyuklieva
机构
[1] St. Cyril and St. Methodius University,Faculty of Mathematics and Informatics
来源
关键词
Optimal binary linear codes; LCD codes; 94B05; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
Linear complementary dual codes (shortly LCD codes) are codes whose intersections with their dual codes are trivial. These codes were first introduced by Massey in 1992. Nowadays, LCD codes are extensively studied in the literature and widely applied in data storage, cryptography, etc. In this paper, we prove some properties of binary LCD codes using their shortened and punctured codes. We also present some inequalities for the largest minimum weight dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} of binary LCD [n, k] codes for given length n and dimension k. Furthermore, we give two tables with the values of dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} for k≤32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 32$$\end{document} and n≤40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 40$$\end{document}, and two tables with classification results.
引用
收藏
页码:2445 / 2461
页数:16
相关论文
共 50 条
  • [31] Several Families of Self-Orthogonal Codes and Their Applications in Optimal Quantum Codes and LCD Codes
    Wang, Xinran
    Heng, Ziling
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 4769 - 4791
  • [32] On optimal binary codes with unbalanced coordinates
    Ostergard, Patric R. J.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (3-4) : 197 - 200
  • [33] Optimal encoding of binary cyclic codes
    Chen, Houshou
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2006, E89B (12) : 3280 - 3287
  • [34] On optimal binary codes with unbalanced coordinates
    Patric R. J. Östergård
    Applicable Algebra in Engineering, Communication and Computing, 2013, 24 : 197 - 200
  • [35] ON OPTIMAL CODES FOR BINARY ASYMMETRIC CHANNELS
    FLATTO, L
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) : 695 - 697
  • [36] Constructions of optimal LCD codes over large finite fields
    Sok, Lin
    Shi, Minjia
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 138 - 153
  • [37] On the Structure of Binary LCD Codes Having an Automorphism of Odd Prime Order
    Bouyuklieva, Stefka
    de la Cruz, Javier
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6426 - 6433
  • [38] On σ-LCD Codes
    Carlet, Claude
    Mesnager, Sihem
    Tang, Chunming
    Qi, Yanfeng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1694 - 1704
  • [39] Optimal Binary Linear Complementary Pairs of Codes
    Choi, Whan-Hyuk
    Guneri, Cem
    Kim, Jon-Lark
    Ozbudak, Ferruh
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (02): : 469 - 486
  • [40] A class of binary cyclic codes with optimal parameters
    Kaiqiang Liu
    Qi Wang
    Haode Yan
    Cryptography and Communications, 2022, 14 : 663 - 675