Optimal binary LCD codes

被引:0
|
作者
Stefka Bouyuklieva
机构
[1] St. Cyril and St. Methodius University,Faculty of Mathematics and Informatics
来源
关键词
Optimal binary linear codes; LCD codes; 94B05; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
Linear complementary dual codes (shortly LCD codes) are codes whose intersections with their dual codes are trivial. These codes were first introduced by Massey in 1992. Nowadays, LCD codes are extensively studied in the literature and widely applied in data storage, cryptography, etc. In this paper, we prove some properties of binary LCD codes using their shortened and punctured codes. We also present some inequalities for the largest minimum weight dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} of binary LCD [n, k] codes for given length n and dimension k. Furthermore, we give two tables with the values of dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} for k≤32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 32$$\end{document} and n≤40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 40$$\end{document}, and two tables with classification results.
引用
收藏
页码:2445 / 2461
页数:16
相关论文
共 50 条
  • [1] Optimal binary LCD codes
    Bouyuklieva, Stefka
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2445 - 2461
  • [2] New constructions of optimal binary LCD codes
    Wang, Guodong
    Liu, Shengwei
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 95
  • [3] On the Construction of Binary Optimal LCD Codes with Short Length
    Fu, Qiang
    Li, Ruihu
    Fu, Fangwei
    Rao, Yi
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (08) : 1237 - 1245
  • [4] Construction of binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes
    Masaaki Harada
    Designs, Codes and Cryptography, 2021, 89 : 2295 - 2312
  • [5] On the minimum distances of binary optimal LCD codes with dimension 5
    Liu, Yang
    Li, Ruihu
    Fu, Qiang
    Song, Hao
    AIMS MATHEMATICS, 2024, 9 (07): : 19137 - 19153
  • [7] On the minimum weights of binary LCD codes and ternary LCD codes
    Araya, Makoto
    Harada, Masaaki
    Saito, Ken
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76
  • [8] On binary LCD cyclic codes
    Rao, Yi
    Li, Ruihu
    Lv, Liangdong
    Chen, Gang
    Zuo, Fei
    ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2017, 107 : 778 - 783
  • [9] Some bounds on binary LCD codes
    Lucky Galvez
    Jon-Lark Kim
    Nari Lee
    Young Gun Roe
    Byung-Sun Won
    Cryptography and Communications, 2018, 10 : 719 - 728
  • [10] On Locality of Some Binary LCD Codes
    Yang, Ruipan
    Li, Ruihu
    Fu, Qiang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (10) : 1330 - 1335