The L∞ optimal transport: infinite cyclical monotonicity and the existence of optimal transport maps

被引:0
|
作者
Jylha, Heikki [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
关键词
D O I
10.1007/s00526-014-0713-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear optimal transportation problem of minimizing the functional among transport plans with given marginals. We present some general results regarding the problem, particularly connecting "good" solutions to a suitable definition of cyclical monotonicity. We show that cyclically monotone transport plans are induced by transport maps in under relatively general assumptions on the first marginal and the cost function. With additional assumptions we are also able to prove results about continuity and uniqueness of these optimal maps.
引用
收藏
页码:303 / 326
页数:24
相关论文
共 50 条
  • [31] DUALITY FOR THE L∞ OPTIMAL TRANSPORT PROBLEM
    Barron, E. N.
    Bocea, M.
    Jensen, R. R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (05) : 3289 - 3323
  • [32] Infinite-body optimal transport with Coulomb cost
    Cotar, Codina
    Friesecke, Gero
    Pass, Brendan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 717 - 742
  • [33] Infinite-body optimal transport with Coulomb cost
    Codina Cotar
    Gero Friesecke
    Brendan Pass
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 717 - 742
  • [34] Regularity of optimal transport maps on multiple products of spheres
    Figalli, Alessio
    Kim, Young-Heon
    McCann, Robert J.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (04) : 1131 - 1166
  • [35] Optimal maps in Monge's mass transport problem
    Gangbo, W
    McCann, RJ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (12): : 1653 - 1658
  • [36] Regularity of optimal transport maps and partial differential inclusions
    Ambrosio, Luigi
    De Philippis, Guido
    Kirchheim, Bernd
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (03) : 311 - 336
  • [37] Optimal Estimation of Smooth Transport Maps with Kernel SoS
    Vacher, Adrien
    Muzellec, Boris
    Bach, Francis
    Vialard, Francois-Xavier
    Rudi, Alessandro
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2024, 6 (02): : 311 - 342
  • [38] Tractable optimal experimental design using transport maps
    Koval, Karina
    Herzog, Roland
    Scheichl, Robert
    INVERSE PROBLEMS, 2024, 40 (12)
  • [39] A geometric approach to apriori estimates for optimal transport maps
    Brendle, Simon
    Leger, Flavien
    McCann, Robert J.
    Rankin, Cale
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (817): : 251 - 266
  • [40] Sobolev estimates for optimal transport maps on Gaussian spaces
    Fang, Shizan
    Nolot, Vincent
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 5045 - 5084