The L∞ optimal transport: infinite cyclical monotonicity and the existence of optimal transport maps

被引:0
|
作者
Jylha, Heikki [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
关键词
D O I
10.1007/s00526-014-0713-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear optimal transportation problem of minimizing the functional among transport plans with given marginals. We present some general results regarding the problem, particularly connecting "good" solutions to a suitable definition of cyclical monotonicity. We show that cyclically monotone transport plans are induced by transport maps in under relatively general assumptions on the first marginal and the cost function. With additional assumptions we are also able to prove results about continuity and uniqueness of these optimal maps.
引用
收藏
页码:303 / 326
页数:24
相关论文
共 50 条
  • [21] Partial regularity for optimal transport maps
    Guido De Philippis
    Alessio Figalli
    Publications mathématiques de l'IHÉS, 2015, 121 : 81 - 112
  • [22] Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces
    Ambrosio, Luigi
    Rajala, Tapio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) : 71 - 87
  • [23] Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces
    Luigi Ambrosio
    Tapio Rajala
    Annali di Matematica Pura ed Applicata, 2014, 193 : 71 - 87
  • [24] Conditions for existence of single valued optimal transport maps on convex boundaries with nontwisted cost
    Jeong, Seonghyeon
    Kitagawa, Jun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (04)
  • [25] Parseval's identity and optimal transport maps
    Ghaffari, N.
    Walker, S. G.
    STATISTICS & PROBABILITY LETTERS, 2021, 170
  • [26] Sharp boundary ε-regularity of optimal transport maps
    Miura, Tatsuya
    Otto, Felix
    ADVANCES IN MATHEMATICS, 2021, 381
  • [27] MINIMAX ESTIMATION OF SMOOTH OPTIMAL TRANSPORT MAPS
    Huetter, Jan-Christian
    Rigollet, Philippe
    ANNALS OF STATISTICS, 2021, 49 (02): : 1166 - 1194
  • [28] Optimal transport maps on Alexandrov spaces revisited
    Tapio Rajala
    Timo Schultz
    manuscripta mathematica, 2022, 169 : 1 - 18
  • [29] Optimal transport maps on Alexandrov spaces revisited
    Rajala, Tapio
    Schultz, Timo
    MANUSCRIPTA MATHEMATICA, 2022, 169 (1-2) : 1 - 18
  • [30] PLUGIN ESTIMATION OF SMOOTH OPTIMAL TRANSPORT MAPS
    Manole, Tudor
    Balakrishnan, Sivaraman
    Niles-Weed, Jonathan
    Wasserman, Larry
    ANNALS OF STATISTICS, 2024, 52 (03): : 966 - 998