Coercion in the Evolution of Plant-Microbe Communication: A Perspective

被引:0
|
作者
Rowe, S. L. [1 ]
Norman, J. S. [1 ]
Friesen, M. L. [1 ,2 ,3 ]
机构
[1] Michigan State Univ, Plant Biol Dept, E Lansing, MI 48824 USA
[2] Washington State Univ, Dept Dept Plant Pathol, Pullman, WA 99164 USA
[3] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
QUORUM-SENSING INHIBITORS; CHROMOBACTERIUM-VIOLACEUM; AUXIN PRODUCTION; HOMOSERINE; PSEUDOMONAS; RICE; SUBSTANCES; EXPRESSION; MOLECULE; ETHYLENE;
D O I
10.1094/MPMI-11-17-0276-CR
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants and microbes are dependent on chemical signals as a means of interkingdom communication. There are two predicted paths for the evolution of these signals. Ritualization is the oft-assumed pathway for the evolution of plant-microbe communication systems. In this process, chemical signals, which benefit both receiver and sender, evolve from chemical cues, which benefit only the receiver. However, plant-microbe signaling may evolve from coercive interactions as well, a process known as sensory manipulation. Here, we aim to highlight the prevalence of coercive interactions and discuss sensory manipulation in the context of plant-microbe interactions. We present two examples of stabilized coercion: microbial coercion of plants via the release of phytohormones and plant coercion of microbes via manipulation of quorum-sensing compounds. Furthermore, we provide an evolutionary framework for the emergence of signaling from coercive plant-microbe interactions through the process of sensory manipulation. We hope that researchers will recognize the relevance of coercive interactions in plant-microbe systems and consider sensory manipulation as a plausible evolutionary trajectory for the emergence of plant-microbe signaling.
引用
收藏
页码:789 / 794
页数:6
相关论文
共 50 条
  • [31] Transport and secretion in plant-microbe interactions
    Hueckelhoven, Ralph
    CURRENT OPINION IN PLANT BIOLOGY, 2007, 10 (06) : 573 - 579
  • [32] Role of Iron in Plant-Microbe Interactions
    Lemanceau, P.
    Expert, D.
    Gaymard, F.
    Bakker, P. A. H. M.
    Briat, J. -F.
    PLANT INNATE IMMUNITY, 2009, 51 : 491 - 549
  • [33] Plant-microbe interactions: tipping the balance
    Ntoukakis, Vardis
    Gifford, Miriam L.
    JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (18) : 4583 - 4585
  • [34] The apoplast as battleground for plant-microbe interactions
    Du, Yu
    Stegmann, Martin
    Villamil, Johana C. Misas
    NEW PHYTOLOGIST, 2016, 209 (01) : 34 - 38
  • [35] Signaling and Nutrient in Plant-Microbe Sybmioses
    Wang, E.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2019, 32 (10) : 216 - 216
  • [36] The role of phytohormones in plant-microbe symbioses
    Hirsch, AM
    Fang, Y
    Asad, S
    Kapulnik, Y
    PLANT AND SOIL, 1997, 194 (1-2) : 171 - 184
  • [37] Rhizoremediation: A beneficial plant-microbe interaction
    Kuiper, I
    Lagendijk, EL
    Bloemberg, GV
    Lugtenberg, BJJ
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2004, 17 (01) : 6 - 15
  • [38] Bioremediation of soils by plant-microbe systems
    Cohen, MF
    Yamasaki, H
    Mazzola, M
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2004, 1 (03) : 301 - 312
  • [39] Plant-microbe symbioses as an evolutionary continuum
    Provorov, N. A.
    ZHURNAL OBSHCHEI BIOLOGII, 2009, 70 (01): : 10 - 34
  • [40] Climate Disruption of Plant-Microbe Interactions
    Rudgers, Jennifer A.
    Afkhami, Michelle E.
    Bell-Dereske, Lukas
    Chung, Y. Anny
    Crawford, Kerri M.
    Kivlin, Stephanie N.
    Mann, Michael A.
    Nunez, Martin A.
    ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 51, 2020, 2020, 51 : 561 - 586