Second-order multivalued stochastic differential equations on Riemannian manifolds

被引:1
|
作者
Bernardin, F
Schatzman, M
Lamarque, CH
机构
[1] CNRS, URA 1652, DGCB, Lab GeoMat,Ecole Natl Travaux Publ Etat, F-69518 Vaulx En Velin, France
[2] Univ Lyon 1, CNRS, UMR 5585, Anal Numer Lab, F-69622 Villeurbanne, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2051期
关键词
stochastic differential equations; manifolds; friction; differential inclusions; maximal monotone operators; rigid body dynamics;
D O I
10.1098/rspa.2004.1312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The existence and uniqueness of solutions to multivalued stochastic differential equations of the second order on Riemannian manifolds are proved. The class of problem is motivated by rigid body and multibody dynamics with friction and an application to the spherical pendulum with friction is presented.
引用
收藏
页码:3095 / 3121
页数:27
相关论文
共 50 条
  • [31] Well posedness of second-order impulsive fractional neutral stochastic differential equations
    Kasinathan, Ramkumar
    Kasinathan, Ravikumar
    Baleanu, Dumitru
    Annamalai, Anguraj
    AIMS MATHEMATICS, 2021, 6 (09): : 9222 - 9235
  • [33] Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations
    Cohen, David
    Sigg, Magdalena
    NUMERISCHE MATHEMATIK, 2012, 121 (01) : 1 - 29
  • [34] Exponential stability of second-order fractional stochastic integro-differential equations
    Dhanalakshmi, K.
    Balasubramaniam, P.
    FILOMAT, 2023, 37 (09) : 2699 - 2715
  • [35] Linearization criteria for systems of two second-order stochastic ordinary differential equations
    Mkhize, T. G.
    Govinder, K.
    Moyo, S.
    Meleshko, S. V.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 301 : 25 - 35
  • [36] Second-order schemes for solving decoupled forward backward stochastic differential equations
    WeiDong Zhao
    Yang Li
    Yu Fu
    Science China Mathematics, 2014, 57 : 665 - 686
  • [37] Best constants in second-order Sobolev inequalities on Riemannian manifolds and applications
    Biezuner, RJ
    Montenegro, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (04): : 457 - 502
  • [38] Modeling financial time series through second-order stochastic differential equations
    Nicolau, Joao
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (16) : 2700 - 2704
  • [39] Exponential stability results for second-order impulsive neutral stochastic differential equations
    Gao, Dongdong
    Kuang, Daipeng
    Li, Jianli
    QUAESTIONES MATHEMATICAE, 2024, 47 (08) : 1631 - 1647
  • [40] Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations
    David Cohen
    Magdalena Sigg
    Numerische Mathematik, 2012, 121 : 1 - 29