Second-order multivalued stochastic differential equations on Riemannian manifolds

被引:1
|
作者
Bernardin, F
Schatzman, M
Lamarque, CH
机构
[1] CNRS, URA 1652, DGCB, Lab GeoMat,Ecole Natl Travaux Publ Etat, F-69518 Vaulx En Velin, France
[2] Univ Lyon 1, CNRS, UMR 5585, Anal Numer Lab, F-69622 Villeurbanne, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2051期
关键词
stochastic differential equations; manifolds; friction; differential inclusions; maximal monotone operators; rigid body dynamics;
D O I
10.1098/rspa.2004.1312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The existence and uniqueness of solutions to multivalued stochastic differential equations of the second order on Riemannian manifolds are proved. The class of problem is motivated by rigid body and multibody dynamics with friction and an application to the spherical pendulum with friction is presented.
引用
收藏
页码:3095 / 3121
页数:27
相关论文
共 50 条
  • [21] Harnack Inequality for Distribution Dependent Second-Order Stochastic Differential Equations
    Huang, Xing
    Ma, Xiaochen
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (04) : 3152 - 3176
  • [22] Application of Stochastic Differential Equations in Second-Order Electrical Circuits Analysis
    Kolarova, Edita
    Brancik, Lubomir
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (7A): : 103 - 107
  • [23] New Second-Order Schemes for Forward Backward Stochastic Differential Equations
    Sun, Yabing
    Zhao, Weidong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (03) : 399 - 421
  • [24] Exponential stability for second-order neutral stochastic differential equations with impulses
    Arthi, G.
    Park, Ju H.
    Jung, H. Y.
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (06) : 1300 - 1309
  • [25] Efficient weak second-order stochastic Runge–Kutta methods for Itô stochastic differential equations
    Xiao Tang
    Aiguo Xiao
    BIT Numerical Mathematics, 2017, 57 : 241 - 260
  • [26] Applications of Riemannian and Einstein–Weyl Geometry in the Theory of Second-Order Ordinary Differential Equations
    V. Dryuma
    Theoretical and Mathematical Physics, 2001, 128 : 845 - 855
  • [27] Oscillation of second-order differential equations
    Ohriska, Jan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 11 - 20
  • [28] A class of second-order differential equations
    Plum, M
    Redheffer, RM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (02) : 454 - 469
  • [29] SYNTHETIC NONLINEAR SECOND-ORDER OSCILLATORS ON RIEMANNIAN MANIFOLDS AND THEIR NUMERICAL SIMULATION
    Fiori, Simone
    Cervigni, Italo
    Ippoliti, Mattia
    Menotta, Claudio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1227 - 1262
  • [30] Second-order schemes for solving decoupled forward backward stochastic differential equations
    ZHAO WeiDong
    LI Yang
    FU Yu
    Science China(Mathematics), 2014, 57 (04) : 665 - 686