Monte Carlo Simulation of an Ir-192 Brachytherapy Source Spectra, Geometry and Anysotropy Factors Using Geant4 Code

被引:1
|
作者
Fonseca-Rodrigues, S. S. O. [1 ]
Begalli, M. [2 ]
Queiroz Filho, P. P. [1 ]
Souza-Santos, D. [1 ]
机构
[1] Inst Radioprotecao & Dosimetria, Av Salvador Allende S-N, BR-22780160 Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Inst Fis, Rio De Janeiro, Brazil
关键词
brachyterapy; Geant4; calculation of dose; DOSIMETRY; MODELS;
D O I
10.1109/NSSMIC.2009.5401657
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In brachytherapy cancer treatments, methods for Calculation of dose delivered to tumours and organs have been continuously improving. Monte Carlo methods are an important tool in dose calculation for brachytherapy cancer treatments, where the exposition to the source planning aims at the maximization of dose deposition in the target volume, while minimizing the deposition in healthy tissues. The use of interstitial brachytherapy sources follows the recommendations of AAPM REPORT No. 51. The present work is based on Monte Carlo simulations with the GEANT4 toolkit of the dose quantities recommended by that report. An Iridium-192 Buchler HDR source was simulated and the geometry of dose deposition in media and energy spectra have been obtained. Calculations also include the Dose Rate Constant Lambda, the Geometry Factor G(r,theta), the Anisotropy Function F(r,theta) and the Radial Dose Function g(r,theta).
引用
收藏
页码:544 / +
页数:2
相关论文
共 50 条
  • [21] Monte Carlo simulation of NovalisTx linear accelerator using GATE/Geant4 code for dosimetry analysis
    Fathi, Ahmed
    Khobbaizi, Youness
    Nabil, Sanaa
    Ardouz, Anas
    Hasnaoui, Abdellatif
    Sbiaai, Khalid
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 466 - 472
  • [22] A Comprehensive Study to Design A Novel Direction Modulated Brachytherapy (DMBT) Vaginal Cylinder (VC) Using GEANT4 Monte Carlo Simulation Code
    Meftahi, M.
    Song, W.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [23] Proton Source Modeling for Geant4 Monte Carlo Simulations
    Barnes, S.
    McAuley, G.
    Wroe, A.
    Slater, J.
    MEDICAL PHYSICS, 2012, 39 (06) : 3756 - 3757
  • [24] Modification of source contribution in PALS by simulation using Geant4 code
    Ning, Xia
    Cao, Xingzhong
    Li, Chong
    Li, Demin
    Zhang, Peng
    Gong, Yihao
    Xia, Rui
    Wang, Baoyi
    Wei, Long
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 397 : 75 - 81
  • [25] Optimization of a photoneutron source based on 10 MeV electron beam using Geant4 Monte Carlo code
    Askri, Boubaker
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 360 : 1 - 8
  • [26] Simulation of Electron Trajectories in the Multicusp Ion Source Using Geant4 Monte Carlo Code (vol 29, pg 150, 2010)
    Azadboni, Fatemeh Khodadadi
    Sedaghatizade, Mahmood
    JOURNAL OF FUSION ENERGY, 2010, 29 (03) : 305 - 305
  • [27] Geant4/GATE Monte Carlo Code for Internal Dosimetry Using Voxelized Phantom
    S. Kaddouch
    N. El Khayati
    Moscow University Physics Bulletin, 2017, 72 : 658 - 662
  • [28] Monte Carlo studies of the Tunisian gamma irradiation facility using GEANT4 code
    Kadri, O
    Gharbi, F
    Farah, K
    Mannai, K
    Trabelsi, A
    APPLIED RADIATION AND ISOTOPES, 2006, 64 (02) : 170 - 177
  • [29] Geant4/GATE Monte Carlo Code for Internal Dosimetry Using Voxelized Phantom
    Kaddouch, S.
    El Khayati, N.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2017, 72 (06) : 658 - 662
  • [30] Monte Carlo modeling of a novel brachytherapy applicator for rectal cancer treatment using GEANT4
    Poon, E
    DeBlois, F
    Devic, S
    Vuong, T
    Verhaegen, F
    RADIOTHERAPY AND ONCOLOGY, 2005, 76 : S27 - S28