Quantum hydrodynamic models from a maximum entropy principle

被引:9
|
作者
Trovato, M. [1 ]
Reggiani, L. [2 ,3 ]
机构
[1] Univ Catania, Dipartimento Matemat, I-95125 Catania, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[3] Univ Salento, CNISM, I-73100 Lecce, Italy
关键词
D O I
10.1088/1751-8113/43/10/102001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a density matrix formalism to derive a kinetic theory for a quantum gas. Generalized kinetic fields are introduced and, employing the Wigner function, a certain hierarchy of quantum hydrodynamic (QHD) equations for the corresponding macroscopic variables is obtained. We assert a maximum entropy principle to obtain closure of the QHD system. For the explicit incorporation of statistics a proper quantum entropy is analyzed in terms of the reduced density matrix. The determination of the reduced Wigner function for equilibrium and non-equilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (h) over bar (2). Quantum contributions are expressed in powers of (h) over bar (2) while classical results are recovered in the limit (h) over bar -> 0.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Learning mixture models with the regularized latent maximum entropy principle
    Wang, SJ
    Schuurmans, D
    Peng, FC
    Zhao, YX
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (04): : 903 - 916
  • [32] ENTROPY PRINCIPLE FOR VERTEX FUNCTIONS IN QUANTUM FIELD MODELS
    GLIMM, J
    JAFFE, A
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1974, 21 (01): : 1 - 25
  • [33] Partial reconstruction of quantum states via the Jaynes principle of maximum entropy
    Adam, G
    Buzek, V
    Drobny, G
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 416 - 418
  • [34] ON THE FORMULATION OF QUANTUM MAXIMUM ENTROPY PRINCIPLE FOR THE TRANSPORT OF HOT CARRIERS IN THE SEMICONDUCTORS
    Trovato, M.
    WASCOM 2009: 15TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, 2010, : 353 - 358
  • [35] A PROPER NONLOCAL FORMULATION OF QUANTUM MAXIMUM ENTROPY PRINCIPLE IN STATISTICAL MECHANICS
    Trovato, M.
    Reggiani, L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (12):
  • [36] Maximum entropy principle revisited
    Dreyer, W
    Kunik, M
    CONTINUUM MECHANICS AND THERMODYNAMICS, 1998, 10 (06) : 331 - 347
  • [37] The latent maximum entropy principle
    Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States
    不详
    不详
    ACM Trans. Knowl. Discov. Data, 2
  • [38] The principle of the maximum entropy method
    Sakata, M
    Takata, M
    HIGH PRESSURE RESEARCH, 1996, 14 (4-6) : 327 - 333
  • [39] THE MAXIMUM-ENTROPY PRINCIPLE
    FELLGETT, PB
    KYBERNETES, 1987, 16 (02) : 125 - 125
  • [40] MAXIMUM-ENTROPY PRINCIPLE
    BALASUBRAMANIAN, V
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1984, 35 (03): : 153 - 153