Quantum hydrodynamic models from a maximum entropy principle

被引:9
|
作者
Trovato, M. [1 ]
Reggiani, L. [2 ,3 ]
机构
[1] Univ Catania, Dipartimento Matemat, I-95125 Catania, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[3] Univ Salento, CNISM, I-73100 Lecce, Italy
关键词
D O I
10.1088/1751-8113/43/10/102001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a density matrix formalism to derive a kinetic theory for a quantum gas. Generalized kinetic fields are introduced and, employing the Wigner function, a certain hierarchy of quantum hydrodynamic (QHD) equations for the corresponding macroscopic variables is obtained. We assert a maximum entropy principle to obtain closure of the QHD system. For the explicit incorporation of statistics a proper quantum entropy is analyzed in terms of the reduced density matrix. The determination of the reduced Wigner function for equilibrium and non-equilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (h) over bar (2). Quantum contributions are expressed in powers of (h) over bar (2) while classical results are recovered in the limit (h) over bar -> 0.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION
    Bilich, F.
    DaSilva, R.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 252 - +
  • [42] The Latent Maximum Entropy Principle
    Wang, Shaojun
    Schuurmans, Dale
    Zhao, Yunxin
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (02)
  • [43] Generalized maximum entropy principle
    Kesavan, H.K., 1600, (19):
  • [44] THE PRINCIPLE OF MAXIMUM-ENTROPY
    GUIASU, S
    SHENITZER, A
    MATHEMATICAL INTELLIGENCER, 1985, 7 (01): : 42 - 48
  • [45] Metasystems and the maximum entropy principle
    Pittarelli, M
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1996, 24 (1-2) : 191 - 206
  • [46] The latent maximum entropy principle
    Wang, SJ
    Rosenfeld, R
    Zhao, YX
    Schuurmans, D
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 131 - 131
  • [47] Maximum entropy principle revisited
    Wolfgang Dreyer
    Matthias Kunik
    Continuum Mechanics and Thermodynamics, 1998, 10 : 331 - 347
  • [48] IMPLICATIONS OF THE ENTROPY MAXIMUM PRINCIPLE
    KAZES, E
    CUTLER, PH
    AMERICAN JOURNAL OF PHYSICS, 1988, 56 (06) : 560 - 561
  • [49] Venus atmosphere profile from a maximum entropy principle
    Epele, L. N.
    Fanchiotti, H.
    Garcia Canal, C. A.
    Pacheco, A. F.
    Sanudo, J.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (05) : 641 - 647
  • [50] Statistical equilibrium of tetrahedra from maximum entropy principle
    Chirco, Goffredo
    Kotecha, Isha
    Oriti, Daniele
    PHYSICAL REVIEW D, 2019, 99 (08)