Dynamic Type-2 Fuzzy Dependent Dirichlet Regression Mixture clustering model

被引:1
|
作者
Gamasaee, R. [1 ]
Zarandi, M. H. Fazel [1 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, POB 15875-4413, Tehran, Iran
关键词
Dynamic regression clustering; Segmentation Dependent Dirichlet Process Mixture; Piecewise Regression Mixture; Interval Type-2 Fuzzy &Regression; Clustering; HIDDEN PROCESS REGRESSION; VARIABLE SELECTION; TIME-SERIES; PARAMETER OPTIMIZATION; DISCRIMINANT-ANALYSIS; IDENTIFICATION; ONLINE;
D O I
10.1016/j.asoc.2017.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new dynamic Interval Type-2 Fuzzy Dependent Dirichlet Piecewise Regression Mixture (IT2FDDPRM) clustering model is proposed. The model overcomes shortcomings of both Dependent Dirichlet Process Mixture (DDPM) technique and Interval Type-2 Fuzzy C-regression Clustering Model (IT2FCRM). DDPM method demonstrates that the probability of assigning data to a cluster including the maximum number of data among all clusters is higher, and it ignores the similarity of data to a cluster. However, the new IT2FDDPRM clustering technique supports assignment of data to a cluster which has the most similarity to them. It also allows the model to generate infinite number of clusters. Moreover, it has the capability of segmenting functions assigned to clusters. The model is validated using statistical tests, three validity functions, and mean square error of the model. The results of numerical experiments show that the proposed method has superior performance to other clustering techniques in literature. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:577 / 604
页数:28
相关论文
共 50 条
  • [41] Type-2 Fuzzy Hypergraphs Using Type-2 Fuzzy Sets
    Park, Seihwan
    Lee-Kwang, Hyung
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2000, 4 (05) : 362 - 367
  • [42] Clustering compositional data using Dirichlet mixture model
    Pal, Samyajoy
    Heumann, Christian
    PLOS ONE, 2022, 17 (05):
  • [43] Speaker Verification Using Type-2 Fuzzy Gaussian Mixture Models
    Ren, Tsang Ing
    Gabriel, Dimas
    Pinheiro, Hector N. B.
    Cavalcanti, George D. C.
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2336 - 2340
  • [44] General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy Clustering
    Linda, Ondrej
    Manic, Milos
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (05) : 883 - 897
  • [45] IFCM: Fuzzy clustering for rule extraction of interval Type-2 fuzzy logic system
    Zhang, Wei-Bin
    Liu, Wen-Jiang
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2564 - 2568
  • [46] Knowledge Discovery and Modeling based on Conditional Fuzzy Clustering with Interval Type-2 Fuzzy
    Byeon, Yeong-Hyeon
    Kwak, Keun-Chang
    2015 7TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (IC3K), 2015, : 440 - 444
  • [47] Uncertain fuzzy clustering:: Interval type-2 fuzzy approach to C-means
    Hwang, Cheul
    Rhee, Frank Chung-Hoon
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 107 - 120
  • [48] Statistical Normalization for a Guided Clustering Type-2 Fuzzy System for WSN
    Yuste-Delgado, A. J.
    Cuevas-Martinez, J. C.
    Trivino-Cabrera, A.
    IEEE SENSORS JOURNAL, 2022, 22 (06) : 6187 - 6195
  • [49] Sea Surface Temperature Clustering based on Type-2 Fuzzy Theory
    Qin, Kun
    Kong, Lingqiao
    Liu, Yao
    Xiao, Qizhi
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [50] EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm
    Yuste-Delgado, Antonio Jesus
    Cuevas-Martinez, Juan Carlos
    Trivino-Cabrera, Alicia
    IEEE SENSORS JOURNAL, 2019, 19 (12) : 4705 - 4716