Dynamic Type-2 Fuzzy Dependent Dirichlet Regression Mixture clustering model

被引:1
|
作者
Gamasaee, R. [1 ]
Zarandi, M. H. Fazel [1 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, POB 15875-4413, Tehran, Iran
关键词
Dynamic regression clustering; Segmentation Dependent Dirichlet Process Mixture; Piecewise Regression Mixture; Interval Type-2 Fuzzy &Regression; Clustering; HIDDEN PROCESS REGRESSION; VARIABLE SELECTION; TIME-SERIES; PARAMETER OPTIMIZATION; DISCRIMINANT-ANALYSIS; IDENTIFICATION; ONLINE;
D O I
10.1016/j.asoc.2017.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new dynamic Interval Type-2 Fuzzy Dependent Dirichlet Piecewise Regression Mixture (IT2FDDPRM) clustering model is proposed. The model overcomes shortcomings of both Dependent Dirichlet Process Mixture (DDPM) technique and Interval Type-2 Fuzzy C-regression Clustering Model (IT2FCRM). DDPM method demonstrates that the probability of assigning data to a cluster including the maximum number of data among all clusters is higher, and it ignores the similarity of data to a cluster. However, the new IT2FDDPRM clustering technique supports assignment of data to a cluster which has the most similarity to them. It also allows the model to generate infinite number of clusters. Moreover, it has the capability of segmenting functions assigned to clusters. The model is validated using statistical tests, three validity functions, and mean square error of the model. The results of numerical experiments show that the proposed method has superior performance to other clustering techniques in literature. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:577 / 604
页数:28
相关论文
共 50 条
  • [21] Research on dirichlet process mixture model for clustering
    Zhang B.
    Zhang K.
    Zhong L.
    Zhang X.
    Ingenierie des Systemes d'Information, 2019, 24 (02): : 183 - 189
  • [22] Transformation between type-2 TSK fuzzy systems and an uncertain Gaussian mixture model
    Qinli Zhang
    Fu-lai Chung
    Shitong Wang
    Soft Computing, 2010, 14 : 701 - 711
  • [23] Transformation between type-2 TSK fuzzy systems and an uncertain Gaussian mixture model
    Zhang, Qinli
    Chung, Fu-lai
    Wang, Shitong
    SOFT COMPUTING, 2010, 14 (07) : 701 - 711
  • [24] Building Linguistic Random Regression Model from the Perspective of Type-2 Fuzzy Set
    Song, Fei
    Imai, Shinya
    Watada, Junzo
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2376 - 2383
  • [25] On Type-2 Fuzzy Sets and Type-2 Fuzzy Systems
    Shvedov A.S.
    Journal of Mathematical Sciences, 2021, 259 (3) : 376 - 384
  • [26] Interval Type-2 Fuzzy Clustering for Membership Function Generation
    Rubio, E.
    Castillo, O.
    PROCEEDINGS OF THE 2013 IEEE WORKSHOP ON HYBRID INTELLIGENT MODELS AND APPLICATIONS (HIMA), 2013, : 13 - 18
  • [27] Interval Type-2 Fuzzy Co-Clustering Algorithm
    Van Nha Pham
    Long Thanh Ngo
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [28] A type-2 fuzzy C-means clustering algorithm
    Rhee, FCH
    Hwang, C
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 1926 - 1929
  • [29] Type-2 Fuzzy Clustering and a Type-2 Fuzzy Inference Neural Network for the Prediction of Short-Term Interest Rates
    Enke, David
    Mehdiyev, Nijat
    COMPLEX ADAPTIVE SYSTEMS: EMERGING TECHNOLOGIES FOR EVOLVING SYSTEMS: SOCIO-TECHNICAL, CYBER AND BIG DATA, 2013, 20 : 115 - 120
  • [30] Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization
    Aliev, Rafik A.
    Pedrycz, Witold
    Guirimov, Babek G.
    Aliev, Rashad R.
    Ilhan, Umit
    Babagil, Mustafa
    Mammadli, Sadik
    INFORMATION SCIENCES, 2011, 181 (09) : 1591 - 1608