Dynamic Type-2 Fuzzy Dependent Dirichlet Regression Mixture clustering model

被引:1
|
作者
Gamasaee, R. [1 ]
Zarandi, M. H. Fazel [1 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, POB 15875-4413, Tehran, Iran
关键词
Dynamic regression clustering; Segmentation Dependent Dirichlet Process Mixture; Piecewise Regression Mixture; Interval Type-2 Fuzzy &Regression; Clustering; HIDDEN PROCESS REGRESSION; VARIABLE SELECTION; TIME-SERIES; PARAMETER OPTIMIZATION; DISCRIMINANT-ANALYSIS; IDENTIFICATION; ONLINE;
D O I
10.1016/j.asoc.2017.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new dynamic Interval Type-2 Fuzzy Dependent Dirichlet Piecewise Regression Mixture (IT2FDDPRM) clustering model is proposed. The model overcomes shortcomings of both Dependent Dirichlet Process Mixture (DDPM) technique and Interval Type-2 Fuzzy C-regression Clustering Model (IT2FCRM). DDPM method demonstrates that the probability of assigning data to a cluster including the maximum number of data among all clusters is higher, and it ignores the similarity of data to a cluster. However, the new IT2FDDPRM clustering technique supports assignment of data to a cluster which has the most similarity to them. It also allows the model to generate infinite number of clusters. Moreover, it has the capability of segmenting functions assigned to clusters. The model is validated using statistical tests, three validity functions, and mean square error of the model. The results of numerical experiments show that the proposed method has superior performance to other clustering techniques in literature. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:577 / 604
页数:28
相关论文
共 50 条
  • [31] Interval Type-2 Recursive Fuzzy C-Means Clustering Algorithm in the TS Fuzzy Model Identification
    Dam, Tanmoy
    Deb, Alok Kanti
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 22 - 29
  • [32] A model for type-2 fuzzy rough sets
    Lu, Juan
    Li, De-Yu
    Zhai, Yan-Hui
    Li, Hua
    Bai, He-Xiang
    INFORMATION SCIENCES, 2016, 328 : 359 - 377
  • [33] DIRICHLET PROCESS MIXTURE MODELS FOR TIME-DEPENDENT CLUSTERING
    Yu, Kezi
    Djuric, Petar M.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4383 - 4387
  • [34] Type-2 Fuzzy Labeled Latent Dirichlet Allocation for Human Action Categorization
    Cao, Xiao-Qin
    Liu, Zhi-Qiang
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1338 - 1341
  • [35] A Clustering Algorithm for WSN to Optimize the Network Lifetime Using Type-2 Fuzzy Logic Model
    Pushpalatha, D. V.
    Nayak, Padmalaya
    2015 THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION (AIMS 2015), 2015, : 53 - 58
  • [36] Clustering with label constrained Dirichlet process mixture model
    Burhanuddin, Nurul Afiqah
    Adam, Mohd Bakri
    Ibrahim, Kamarulzaman
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [37] Unsupervised nested Dirichlet finite mixture model for clustering
    Fares Alkhawaja
    Nizar Bouguila
    Applied Intelligence, 2023, 53 : 25232 - 25258
  • [38] Graph Clustering Using Dirichlet Process Mixture Model
    Atastina, Imelda
    Sitohang, Benhard
    Putri, G. A. S.
    Moertini, Veronica S.
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2017,
  • [39] Unsupervised nested Dirichlet finite mixture model for clustering
    Alkhawaja, Fares
    Bouguila, Nizar
    APPLIED INTELLIGENCE, 2023, 53 (21) : 25232 - 25258
  • [40] T-S fuzzy model identification based on an improved interval type-2 fuzzy c-regression model
    Shi, Jianzhong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4495 - 4507