Dynamic Type-2 Fuzzy Dependent Dirichlet Regression Mixture clustering model

被引:1
|
作者
Gamasaee, R. [1 ]
Zarandi, M. H. Fazel [1 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, POB 15875-4413, Tehran, Iran
关键词
Dynamic regression clustering; Segmentation Dependent Dirichlet Process Mixture; Piecewise Regression Mixture; Interval Type-2 Fuzzy &Regression; Clustering; HIDDEN PROCESS REGRESSION; VARIABLE SELECTION; TIME-SERIES; PARAMETER OPTIMIZATION; DISCRIMINANT-ANALYSIS; IDENTIFICATION; ONLINE;
D O I
10.1016/j.asoc.2017.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new dynamic Interval Type-2 Fuzzy Dependent Dirichlet Piecewise Regression Mixture (IT2FDDPRM) clustering model is proposed. The model overcomes shortcomings of both Dependent Dirichlet Process Mixture (DDPM) technique and Interval Type-2 Fuzzy C-regression Clustering Model (IT2FCRM). DDPM method demonstrates that the probability of assigning data to a cluster including the maximum number of data among all clusters is higher, and it ignores the similarity of data to a cluster. However, the new IT2FDDPRM clustering technique supports assignment of data to a cluster which has the most similarity to them. It also allows the model to generate infinite number of clusters. Moreover, it has the capability of segmenting functions assigned to clusters. The model is validated using statistical tests, three validity functions, and mean square error of the model. The results of numerical experiments show that the proposed method has superior performance to other clustering techniques in literature. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:577 / 604
页数:28
相关论文
共 50 条
  • [1] A Piecewise Type-2 Fuzzy Regression Model
    Bajestani, Narges Shafaei
    Kamyad, Ali Vahidian
    Zare, Assef
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 10 (01) : 734 - 744
  • [2] A piecewise type-2 fuzzy regression model
    Shafaei Bajestani N.
    Kamyad A.V.
    Zare A.
    International Journal of Computational Intelligence Systems, 2017, 10 (1) : 734 - 744
  • [3] Interval Type-2 Modified Fuzzy C-Regression Model Clustering Algorithm in TS Fuzzy Model Identification
    Dam, Tanmoy
    Deb, Alok Kanti
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1671 - 1676
  • [4] Building a Type-2 Fuzzy Qualitative Regression Model
    Wei, Yicheng
    Watada, Junzo
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2012, 16 (04) : 527 - 532
  • [5] A Fuzzy Linear Regression Model with Interval Type-2 Fuzzy Coefficients
    Poleshchuk, O. M.
    Komarov, E. G.
    Darwish, Ashraf
    PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 388 - 391
  • [6] An Interval Type-2 Fuzzy Regression Model with Crisp Inputs and Type-2 Fuzzy Outputs for TAIEX Forecasting
    Bajestani, Narges Shafaei
    Kamyad, Ali Vahidian
    Zare, Assef
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 681 - 685
  • [7] Introducing a trapezoidal interval type-2 fuzzy regression model
    Mokhtari, Mikaeel
    Allahviranloo, Tofigh
    Behzadi, Mohammad Hassan
    Lotfi, Farhad Hoseinzadeh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 1381 - 1403
  • [8] Type-2 Fuzzy Mixture of Gaussians Model: Application to Background Modeling
    El Baf, Fida
    Bouwmans, Thierry
    Vachon, Bertrand
    ADVANCES IN VISUAL COMPUTING, PT I, PROCEEDINGS, 2008, 5358 : 772 - 781
  • [9] Type-2 fuzzy Gaussian mixture models
    Zeng, Jia
    Xie, Lei
    Liu, Zhi-Qiang
    PATTERN RECOGNITION, 2008, 41 (12) : 3636 - 3643
  • [10] Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks
    Enke, David
    Grauer, Manfred
    Mehdiyev, Nijat
    COMPLEX ADAPTIVE SYSTEMS, 2011, 6