Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials (vol 7, 103, 2021)

被引:0
|
作者
Dai, Minyi
Demirel, Mehmet F.
Liang, Yingyu
Hu, Jia-Mian
机构
[1] University of Wisconsin-Madison,Department of Materials Science and Engineering
[2] University of Wisconsin-Madison,Department of Computer Sciences
关键词
D O I
10.1038/s41524-022-00804-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [41] CoPriNet: graph neural networks provide accurate and rapid compound price prediction for molecule prioritisation
    Sanchez-Garcia, Ruben
    Havasi, David
    Takacs, Gergely
    Robinson, Matthew C.
    Lee, Alpha
    von Delft, Frank
    Deane, Charlotte M.
    DIGITAL DISCOVERY, 2023, 2 (01): : 103 - 111
  • [42] Highly accurate and large-scale collision cross sections prediction with graph neural networks
    Renfeng Guo
    Youjia Zhang
    Yuxuan Liao
    Qiong Yang
    Ting Xie
    Xiaqiong Fan
    Zhonglong Lin
    Yi Chen
    Hongmei Lu
    Zhimin Zhang
    Communications Chemistry, 6
  • [43] Highly accurate and large-scale collision cross sections prediction with graph neural networks
    Guo, Renfeng
    Zhang, Youjia
    Liao, Yuxuan
    Yang, Qiong
    Xie, Ting
    Fan, Xiaqiong
    Lin, Zhonglong
    Chen, Yi
    Lu, Hongmei
    Zhang, Zhimin
    COMMUNICATIONS CHEMISTRY, 2023, 6 (01)
  • [44] Prediction and control of fracture paths in disordered architected materials using graph neural networks
    Konstantinos Karapiperis
    Dennis M. Kochmann
    Communications Engineering, 2 (1):
  • [45] Scalable deeper graph neural networks for high-performance materials property prediction
    Omee, Sadman Sadeed
    Louis, Steph-Yves
    Fu, Nihang
    Wei, Lai
    Dey, Sourin
    Dong, Rongzhi
    Li, Qinyang
    Hu, Jianjun
    PATTERNS, 2022, 3 (05):
  • [46] Multi-channel convolutional neural networks for materials properties prediction
    Zheng, Xiaolong
    Zheng, Peng
    Zheng, Liang
    Zhang, Yang
    Zhang, Rui-Zhi
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
  • [47] Prediction of dielectric properties of ferroelectric materials based on deep neural networks
    Wang, Jiachen
    Cui, Ziyu
    Zhang, Xin
    Zhao, Jikai
    Li, Fan
    Zhou, Zhongbin
    Teah, Nathan Saye
    Gao, Yunfei
    Zhao, Gaochao
    Yang, Yang
    SCIENCE PROGRESS, 2025, 108 (01)
  • [48] TEP-GNN: Accurate Execution Time Prediction of Functional Tests using Graph Neural Networks
    Samoaa, Hazem Peter
    Longa, Antonio
    Mohamad, Mazen
    Chehreghani, Morteza Haghir
    Leitner, Philipp
    arXiv, 2022,
  • [49] TEP-GNN: Accurate Execution Time Prediction of Functional Tests Using Graph Neural Networks
    Samoaa, Hazem Peter
    Longa, Antonio
    Mohamad, Mazen
    Chehreghani, Morteza Haghir
    Leitner, Philipp
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2022, 2022, 13709 : 464 - 479
  • [50] Leveraging graph neural networks and gate recurrent units for accurate and transparent prediction of baseball pitching speed
    Yang, Chen
    Jin, Pengfei
    Chen, Yan
    SCIENTIFIC REPORTS, 2025, 15 (01):