Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials (vol 7, 103, 2021)

被引:0
|
作者
Dai, Minyi
Demirel, Mehmet F.
Liang, Yingyu
Hu, Jia-Mian
机构
[1] University of Wisconsin-Madison,Department of Materials Science and Engineering
[2] University of Wisconsin-Madison,Department of Computer Sciences
关键词
D O I
10.1038/s41524-022-00804-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Atom table convolutional neural networks for an accurate prediction of compounds properties
    Shuming Zeng
    Yinchang Zhao
    Geng Li
    Ruirui Wang
    Xinming Wang
    Jun Ni
    npj Computational Materials, 5
  • [32] Prediction of large magnetic moment materials with graph neural networks and random forests
    Kaba, Sekou-Oumar
    Groleau-Pare, Benjamin
    Gauthier, Marc-Antoine
    Tremblay, A. -m. s.
    Verret, Simon
    Gauvin-Ndiaye, Chloe
    PHYSICAL REVIEW MATERIALS, 2023, 7 (04)
  • [33] A reproducibility study of atomistic line graph neural networks for materials property prediction
    Li, Kangming
    Decost, Brian
    Choudhary, Kamal
    Hattrick-Simpers, Jason
    DIGITAL DISCOVERY, 2024, 3 (06): : 1123 - 1129
  • [34] Graph convolutional neural networks with global attention for improved materials property prediction
    Louis, Steph-Yves
    Zhao, Yong
    Nasiri, Alireza
    Wang, Xiran
    Song, Yuqi
    Liu, Fei
    Hu, Jianjun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (32) : 18141 - 18148
  • [35] Introducing block design in graph neural networks for molecular properties prediction
    Li, Yuquan
    Li, Pengyong
    Yang, Xing
    Hsieh, Chang-Yu
    Zhang, Shengyu
    Wang, Xiaorui
    Lu, Ruiqiang
    Liu, Huanxiang
    Yao, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [36] Prediction of Material Properties using Crystal Graph Convolutional Neural Networks
    Durvasula, Harsha
    Sahana, V. K.
    Thazhemadam, Anant
    Roy, Reshma P.
    Arya, Arti
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 68 - 73
  • [37] Introducing block design in graph neural networks for molecular properties prediction
    Li, Yuquan
    Li, Pengyong
    Yang, Xing
    Hsieh, Chang-Yu
    Zhang, Shengyu
    Wang, Xiaorui
    Lu, Ruiqiang
    Liu, Huanxiang
    Yao, Xiaojun
    Chemical Engineering Journal, 2021, 414
  • [38] Prediction of mechanical properties of elastomeric materials using neural networks
    Fomin, S. V.
    Rostovtsev, V. S.
    Meltsov, V. U.
    Shirokova, E. S.
    MATERIALS PHYSICS AND MECHANICS, 2023, 51 (05): : 66 - 78
  • [39] DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer
    Shin, Jihye
    Piao, Yinhua
    Bang, Dongmin
    Kim, Sun
    Jo, Kyuri
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [40] Super-fast and accurate nonlinear foot deformation Prediction using graph neural networks
    Kang, Taehyeon
    Kim, Jiho
    Lee, Hyobi
    Yum, Haeun
    Kwon, Chani
    Lim, Youngbin
    Lee, Sangryun
    Lee, Taeyong
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2025, 163