Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials (vol 7, 103, 2021)

被引:0
|
作者
Dai, Minyi
Demirel, Mehmet F.
Liang, Yingyu
Hu, Jia-Mian
机构
[1] University of Wisconsin-Madison,Department of Materials Science and Engineering
[2] University of Wisconsin-Madison,Department of Computer Sciences
关键词
D O I
10.1038/s41524-022-00804-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Anatomically Interpretable Brain Age Prediction in Alzheimer's Disease Using Graph Neural Networks
    Sihag, Saurabh
    Mateos, Gonzalo
    Ribeiro, Alejandro
    McMillan, Corey T.
    ANNALS OF NEUROLOGY, 2023, 94 : S139 - S140
  • [22] Application of interpretable group-embedded graph neural networks for pure compound properties
    Aouichaoui, Adem R. N.
    Fan, Fan
    Abildskov, Jens
    Sin, Gurkan
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 176
  • [23] Materials fatigue prediction using graph neural networks on microstructure representations
    Thomas, Akhil
    Durmaz, Ali Riza
    Alam, Mehwish
    Gumbsch, Peter
    Sack, Harald
    Eberl, Chris
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [24] Materials fatigue prediction using graph neural networks on microstructure representations
    Akhil Thomas
    Ali Riza Durmaz
    Mehwish Alam
    Peter Gumbsch
    Harald Sack
    Chris Eberl
    Scientific Reports, 13
  • [25] Prediction of Dynamical Properties of Biochemical Pathways with Graph Neural Networks
    Bove, Pasquale
    Micheli, Alessio
    Milazzo, Paolo
    Podda, Marco
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 32 - 43
  • [26] SOGCN: Prediction of key properties of MR-TADF materials using graph convolutional neural networks
    Li, Yingfu
    Zhang, Bohua
    Ren, Aimin
    Wang, Dongdong
    Zhang, Jun
    Nie, Changming
    Su, Zhongmin
    Zou, Luyi
    CHEMICAL ENGINEERING JOURNAL, 2024, 501
  • [27] IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction (vol 89, 1277, 2021)
    Gormez, Yasin
    Sabzekar, Mostafa
    Aydin, Zafer
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2022, 90 (08) : 1613 - 1613
  • [28] BikeNet: Accurate Bike Demand Prediction Using Graph Neural Networks for Station Rebalancing
    Guo, Ruiying
    Jiang, Zhihan
    Huang, Jingchun
    Tao, Jianrong
    Wang, Cheng
    Li, Jonathan
    Chen, Longbiao
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 686 - 693
  • [29] Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature
    孔建刚
    李清旭
    李健
    刘羽
    朱家骥
    Chinese Physics Letters, 2022, 39 (06) : 9 - 17
  • [30] Atom table convolutional neural networks for an accurate prediction of compounds properties
    Zeng, Shuming
    Zhao, Yinchang
    Li, Geng
    Wang, Ruirui
    Wang, Xinming
    Ni, Jun
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)