Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials (vol 7, 103, 2021)

被引:0
|
作者
Dai, Minyi
Demirel, Mehmet F.
Liang, Yingyu
Hu, Jia-Mian
机构
[1] University of Wisconsin-Madison,Department of Materials Science and Engineering
[2] University of Wisconsin-Madison,Department of Computer Sciences
关键词
D O I
10.1038/s41524-022-00804-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
    Minyi Dai
    Mehmet F. Demirel
    Yingyu Liang
    Jia-Mian Hu
    npj Computational Materials, 7
  • [2] Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
    Dai, Minyi
    Demirel, Mehmet F.
    Liang, Yingyu
    Hu, Jia-Mian
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [3] Author Correction: Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
    Minyi Dai
    Mehmet F. Demirel
    Yingyu Liang
    Jia-Mian Hu
    npj Computational Materials, 8
  • [4] Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
    Xie, Tian
    Grossman, Jeffrey C.
    PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [5] Towards accurate prediction of configurational disorder properties in materials using graph neural networks
    Fang, Zhenyao
    Yan, Qimin
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [6] Unboxing the graph: Towards interpretable graph neural networks for transport prediction through neural relational inference
    Tygesen, Mathias Niemann
    Pereira, Francisco Camara
    Rodrigues, Filipe
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 146
  • [7] ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction
    Cheng, Danpeng
    Sha, Wuxin
    Han, Qigao
    Tang, Shun
    Zhong, Jun
    Du, Jinqiao
    Tian, Jie
    Cao, Yuan-Cheng
    ELECTROCHIMICA ACTA, 2024, 473
  • [8] Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
    Weber, Jeffrey K.
    Morrone, Joseph A.
    Bagchi, Sugato
    Pabon, Jan D. Estrada
    Kang, Seung-gu
    Zhang, Leili
    Cornell, Wendy D.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (05) : 391 - 404
  • [9] Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
    Jeffrey K. Weber
    Joseph A. Morrone
    Sugato Bagchi
    Jan D. Estrada Pabon
    Seung-gu Kang
    Leili Zhang
    Wendy D. Cornell
    Journal of Computer-Aided Molecular Design, 2022, 36 : 391 - 404
  • [10] Accurate Prediction of Voltage of Battery Electrode Materials Using Attention-Based Graph Neural Networks
    Louis, Steph-Yves
    Siriwardane, Edirisuriya M. Dilanga
    Joshi, Rajendra P.
    Omee, Sadman Sadeed
    Kumar, Neeraj
    Hu, Jianjun
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (23) : 26587 - 26594