Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo

被引:39
|
作者
Kim, Jaehee [1 ]
Cheon, Sooyoung [2 ]
机构
[1] Duksung Womens Univ, Dept Stat, Seoul 132714, South Korea
[2] Korea Univ, Dept Informat Stat, Jochiwon 339700, South Korea
关键词
Annealing Stochastic Approximation Monte Carlo (ASAMC); Bayesian change-point model; Bayes factor; BIC; Posterior; Truncated Poisson; RANDOM-VARIABLES; INFERENCE; MODELS; TIME; DISTRIBUTIONS; COMPUTATION; EFFICIENT; ALGORITHM; POLLUTION; SEQUENCE;
D O I
10.1007/s00180-009-0172-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian multiple change-point models are built with data from normal, exponential, binomial and Poisson distributions with a truncated Poisson prior for the number of change-points and conjugate prior for the distributional parameters. We applied Annealing Stochastic Approximation Monte Carlo (ASAMC) for posterior probability calculations for the possible set of change-points. The proposed methods are studied in simulation and applied to temperature and the number of respiratory deaths in Seoul, South Korea.
引用
收藏
页码:215 / 239
页数:25
相关论文
共 50 条
  • [11] Annealing evolutionary stochastic approximation Monte Carlo for global optimization
    Liang, Faming
    STATISTICS AND COMPUTING, 2011, 21 (03) : 375 - 393
  • [12] Bayesian phylogeny analysis via stochastic approximation Monte Carlo
    Cheon, Sooyoung
    Liang, Faming
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2009, 53 (02) : 394 - 403
  • [13] Barankin bound for multiple change-point estimation
    La Rosa, Patricio S.
    Renaux, Alexandre
    Nehorai, Arye
    2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 233 - 236
  • [14] BAYESIAN MULTIPLE CHANGE-POINT DETECTION WITH LIMITED COMMUNICATION
    Halme, Topi
    Nitzan, Eyal
    Poor, H. Vincent
    Koivunen, Visa
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5490 - 5494
  • [15] On multiple change-point estimation for Poisson process
    Chernoyarov, O. V.
    Kutoyants, Yu. A.
    Top, A.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (05) : 1215 - 1233
  • [16] Estimation and comparison of multiple change-point models
    Chib, S
    JOURNAL OF ECONOMETRICS, 1998, 86 (02) : 221 - 241
  • [17] A Bayesian structural-change analysis via the stochastic approximation Monte Carlo and Gibbs sampler
    Cheon, Sooyoung
    Kim, Jaehee
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (07) : 1444 - 1470
  • [18] BAYESIAN MULTIPLE CHANGE-POINT DETECTION OF PROPAGATING EVENTS
    Halme, Topi
    Nitzan, Eyal
    Koivunen, Visa
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4515 - 4519
  • [19] Multiple change-point estimation in spectral representation
    Kim, Jaehee
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2022, 29 (01) : 127 - 150
  • [20] Bayesian Multiple Change-Point Estimation for Single Quantum Dot Luminescence Intensity Data
    Kim, Jaehee
    Kim, Hahkjoon
    KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (04) : 569 - 579