Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo

被引:39
|
作者
Kim, Jaehee [1 ]
Cheon, Sooyoung [2 ]
机构
[1] Duksung Womens Univ, Dept Stat, Seoul 132714, South Korea
[2] Korea Univ, Dept Informat Stat, Jochiwon 339700, South Korea
关键词
Annealing Stochastic Approximation Monte Carlo (ASAMC); Bayesian change-point model; Bayes factor; BIC; Posterior; Truncated Poisson; RANDOM-VARIABLES; INFERENCE; MODELS; TIME; DISTRIBUTIONS; COMPUTATION; EFFICIENT; ALGORITHM; POLLUTION; SEQUENCE;
D O I
10.1007/s00180-009-0172-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian multiple change-point models are built with data from normal, exponential, binomial and Poisson distributions with a truncated Poisson prior for the number of change-points and conjugate prior for the distributional parameters. We applied Annealing Stochastic Approximation Monte Carlo (ASAMC) for posterior probability calculations for the possible set of change-points. The proposed methods are studied in simulation and applied to temperature and the number of respiratory deaths in Seoul, South Korea.
引用
收藏
页码:215 / 239
页数:25
相关论文
共 50 条
  • [41] ESTIMATION UP TO A CHANGE-POINT
    FOSTER, DP
    GEORGE, EI
    ANNALS OF STATISTICS, 1993, 21 (02): : 625 - 644
  • [42] NONPARAMETRIC CHANGE-POINT ESTIMATION
    CARLSTEIN, E
    ANNALS OF STATISTICS, 1988, 16 (01): : 188 - 197
  • [43] ROBUST RETROSPECTIVE MULTIPLE CHANGE-POINT ESTIMATION FOR MULTIVARIATE DATA
    Lung-Yut-Fong, Alexandre
    Levy-Leduc, Celine
    Cappe, Olivier
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 405 - 408
  • [44] Stochastic approximation in Monte Carlo computation
    Liang, Faming
    Liu, Chuanhai
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 305 - 320
  • [45] An Overview of Stochastic Approximation Monte Carlo
    Liang, Faming
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (04): : 240 - 254
  • [46] Stochastic approximation Hamiltonian Monte Carlo
    Yun, Jonghyun
    Shin, Minsuk
    Hoon Jin, Ick
    Liang, Faming
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3135 - 3156
  • [47] Multidimensional stochastic approximation Monte Carlo
    Zablotskiy, Sergey V.
    Ivanov, Victor A.
    Paul, Wolfgang
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [48] Multiple Change-Point Estimation of Air Pollution Mean Vectors
    Kim, Jaehee
    Cheon, Sooyoung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (04) : 687 - 695
  • [49] A Bayesian method of change-point estimation with recurrent regimes: Application to GARCH models
    Bauwens, Luc
    De Backer, Bruno
    Dufays, Arnaud
    JOURNAL OF EMPIRICAL FINANCE, 2014, 29 : 207 - 229
  • [50] A Bayesian wavelet approach to estimation of a change-point in a nonlinear multivariate time series
    Steward, Robert M.
    Rigdon, Steven E.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (13) : 2625 - 2643