Barankin bound for multiple change-point estimation

被引:0
|
作者
La Rosa, Patricio S. [1 ]
Renaux, Alexandre [1 ]
Nehorai, Arye [1 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
关键词
multiple change-point estimation; performance analysis; Barankin lower bounds on the mean-squared error;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive the Barankin bound on the mean-squared error for multiple change-point estimation of an independent measurement sequence. We first derive a general form of this bound and give the structure of the so-called Barankin information matrix (BIM). We show that the BIM for the change-point parameters has a tri-diagonal structure which means that one change-point estimation depends on its neighboring change points. Using this result, we propose a computationally efficient inversion algorithm of the BIM. As an illustration, we analyze the case of changes in the mean vector of a Gaussian distribution.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
  • [1] Barankin-Type Lower Bound on Multiple Change-Point Estimation
    La Rosa, Patricio S.
    Renaux, Alexandre
    Muravchik, Carlos H.
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (11) : 5534 - 5549
  • [2] Weiss-Weinstein bound for change-point estimation
    Bacharach, Lucien
    Renaux, Alexandre
    El Korso, Mohammed Nabil
    Chaumette, Eric
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 465 - 468
  • [3] Bayesian Multiple Change-Point Estimation and Segmentation
    Kim, Jaehee
    Cheon, Sooyoung
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (06) : 439 - 454
  • [4] On multiple change-point estimation for Poisson process
    Chernoyarov, O. V.
    Kutoyants, Yu. A.
    Top, A.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (05) : 1215 - 1233
  • [5] Estimation and comparison of multiple change-point models
    Chib, S
    JOURNAL OF ECONOMETRICS, 1998, 86 (02) : 221 - 241
  • [6] Multiple change-point estimation in spectral representation
    Kim, Jaehee
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2022, 29 (01) : 127 - 150
  • [7] Equivariant variance estimation for multiple change-point model
    Hao, Ning
    Niu, Yue Selena
    Xiao, Han
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 3811 - 3853
  • [8] Multiple Change-Point Estimation With a Total Variation Penalty
    Harchaoui, Z.
    Levy-Leduc, C.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) : 1480 - 1493
  • [9] Multiple change-point estimation with U-statistics
    Doering, Maik
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 2003 - 2017
  • [10] A LOWER-BOUND FOR ERROR-PROBABILITY IN CHANGE-POINT ESTIMATION
    HU, IC
    RUKHIN, AL
    STATISTICA SINICA, 1995, 5 (01) : 319 - 331