Barankin bound for multiple change-point estimation

被引:0
|
作者
La Rosa, Patricio S. [1 ]
Renaux, Alexandre [1 ]
Nehorai, Arye [1 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
关键词
multiple change-point estimation; performance analysis; Barankin lower bounds on the mean-squared error;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive the Barankin bound on the mean-squared error for multiple change-point estimation of an independent measurement sequence. We first derive a general form of this bound and give the structure of the so-called Barankin information matrix (BIM). We show that the BIM for the change-point parameters has a tri-diagonal structure which means that one change-point estimation depends on its neighboring change points. Using this result, we propose a computationally efficient inversion algorithm of the BIM. As an illustration, we analyze the case of changes in the mean vector of a Gaussian distribution.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
  • [31] Retrospective mutiple change-point estimation with kernels
    Harchaoui, Zaid
    Cappe, Olivier
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 768 - +
  • [32] ESTIMATION OF A CHANGE-POINT IN THE WEIBULL REGRESSION MODEL
    Palmeros-Rojas, Oscar
    Villasenor-Alva, Jose A.
    Tajonar-Sanabria, Francisco S.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2014, 43 (02) : 107 - 118
  • [33] Change-point estimation for censored regression model
    Wang, Zhan-feng
    Wu, Yao-hua
    Zhao, Lin-cheng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (01): : 63 - 72
  • [34] Change-point estimation for censored regression model
    Zhan-feng Wang
    Yao-hua Wu
    Lin-cheng Zhao
    Science in China Series A: Mathematics, 2007, 50 : 63 - 72
  • [35] Change-point estimation as a nonlinear regression problem
    Rukhin, AL
    Vajda, I
    STATISTICS, 1997, 30 (03) : 181 - 200
  • [36] Estimation in a change-point hazard regression model
    Dupuy, JF
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (02) : 182 - 190
  • [37] Nonparametric change-point estimation for dependent sequences
    Ben Hariz, S
    Wylie, JJ
    Zhang, Q
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (10) : 627 - 630
  • [38] CHANGE-POINT ESTIMATION IN NONMONOTONIC AGING MODELS
    MITRA, M
    BASU, SK
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1995, 47 (03) : 483 - 491
  • [39] Optimal change-point estimation in inverse problems
    Neumann, MH
    SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (04) : 503 - 521
  • [40] Estimation in change-point hazard function models
    Wu, CQ
    Zhao, LC
    Wu, YH
    STATISTICS & PROBABILITY LETTERS, 2003, 63 (01) : 41 - 48