LAPLACIAN ESTRADA INDEX OF TREES

被引:0
|
作者
Ilic, Aleksandar [2 ]
Zhou, Bo [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[2] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
关键词
ALKANES; GRAPHS; ENERGY;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a simple graph with n vertices and let mu(1) >= mu(2) >= ... >= mu(n-1) >= mu(n) = 0 be the eigenvalues of its Laplacian matrix. The Laplacian Estrada index of a graph G is defined as LEE(G) = Sigma(n)(i=1) e(mu i). Using the recent connection between Estrada index of a line graph and Laplacian Estrada index, we prove that the path P-n has minimal, while the star S-n has maximal LEE among trees on n vertices. In addition, we find the unique tree with the second maximal Laplacian Estrada index.
引用
收藏
页码:769 / 776
页数:8
相关论文
共 50 条
  • [31] The Asymptotic Behavior of the Estrada Index for Trees
    Li, Xueliang
    Li, Yiyang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 97 - 106
  • [32] THE NORMALIZED SIGNLESS LAPLACIAN ESTRADA INDEX OF GRAPHS
    Altindag, S. B. Bozkurt
    Milovanovic, E.
    Matejic, M.
    Milovanovic, I.
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 131 - 142
  • [33] Characterizing graphs with maximal Laplacian Estrada index
    Li, Jianping
    Zhang, Jianbin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 465 : 312 - 324
  • [34] On the distance signless Laplacian Estrada index of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ramane, Harishchandra
    Li, Xueliang
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (04)
  • [35] On the signless Laplacian Estrada index of uniform hypergraphs
    Lu, Hongyan
    Xue, Nini
    Zhu, Zhongxun
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (08)
  • [36] Novel Bounds for the Normalized Laplacian Estrada Index and Normalized Laplacian Energy
    Clemente, Gian Paolo
    Cornaro, Alessandra
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (03) : 673 - 690
  • [37] Sharp lower bounds for the Laplacian Estrada index of graphs
    Barik, Sasmita
    Shamsher, Tahir
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [38] A sharper lower bound on the signless Laplacian Estrada index
    Zhang, Hongbing
    ARS COMBINATORIA, 2018, 139 : 19 - 26
  • [39] On maximum signless Laplacian Estrada indices of k-trees
    Ning, Wenjie
    Wang, Kun
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [40] ON DISTANCE SIGNLESS LAPLACIAN ESTRADA INDEX AND ENERGY OF GRAPHS
    Alhevaz, Abdollah
    Baghipur, Maryam
    Pirzada, Shariefuddin
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (06): : 837 - 858