LAPLACIAN ESTRADA INDEX OF TREES

被引:0
|
作者
Ilic, Aleksandar [2 ]
Zhou, Bo [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[2] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
关键词
ALKANES; GRAPHS; ENERGY;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a simple graph with n vertices and let mu(1) >= mu(2) >= ... >= mu(n-1) >= mu(n) = 0 be the eigenvalues of its Laplacian matrix. The Laplacian Estrada index of a graph G is defined as LEE(G) = Sigma(n)(i=1) e(mu i). Using the recent connection between Estrada index of a line graph and Laplacian Estrada index, we prove that the path P-n has minimal, while the star S-n has maximal LEE among trees on n vertices. In addition, we find the unique tree with the second maximal Laplacian Estrada index.
引用
收藏
页码:769 / 776
页数:8
相关论文
共 50 条