共 50 条
On maximum signless Laplacian Estrada indices of k-trees
被引:0
|作者:
Ning, Wenjie
[1
]
Wang, Kun
[2
]
机构:
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Estrada index;
Signless Laplacian Estrada index;
Semi-edge walk;
k-trees;
Simplicial vertex;
ZAGREB INDEXES;
FOLDING DEGREE;
SHARP BOUNDS;
GRAPHS;
D O I:
10.1016/j.disc.2019.111666
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The signless Laplacian Estrada index of a graph G is defined as SLEE(G) = Sigma(n)(i=i) e(qi), where q(1), q(2), ... q(n) are the eigenvalues of the signless Laplacian matrix of G. A k-tree is either a complete graph on k vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k edges connecting it to a k-clique. Denote by T-n(k) the set of all k-trees of order n. In this paper, we characterize the graphs among T-n(k) with the first (resp. the second) largest SLEE. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文