On maximum signless Laplacian Estrada indices of k-trees

被引:0
|
作者
Ning, Wenjie [1 ]
Wang, Kun [2 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Estrada index; Signless Laplacian Estrada index; Semi-edge walk; k-trees; Simplicial vertex; ZAGREB INDEXES; FOLDING DEGREE; SHARP BOUNDS; GRAPHS;
D O I
10.1016/j.disc.2019.111666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The signless Laplacian Estrada index of a graph G is defined as SLEE(G) = Sigma(n)(i=i) e(qi), where q(1), q(2), ... q(n) are the eigenvalues of the signless Laplacian matrix of G. A k-tree is either a complete graph on k vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k edges connecting it to a k-clique. Denote by T-n(k) the set of all k-trees of order n. In this paper, we characterize the graphs among T-n(k) with the first (resp. the second) largest SLEE. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On maximum Estrada indices of k-trees
    Huang, Fei
    Wang, Shujing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 487 : 316 - 327
  • [2] On the signless Laplacian spectra of k-trees
    Zhang, Minjie
    Li, Shuchao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 136 - 148
  • [3] On Laplacian and Signless Laplacian Estrada Indices of Graphs
    Azami, Shahroud
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 74 (02) : 411 - 418
  • [4] Resolvent Estrada and Signless Laplacian Estrada Indices of Graphs
    Nasiri, R.
    Ellahi, H. R.
    Gholami, A.
    Fath-Tabar, G. H.
    Ashrafi, A. R.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (01) : 157 - 176
  • [5] Graphs with maximum Laplacian and signless Laplacian Estrada index
    Gutman, Ivan
    Medina C, Luis
    Pizarro, Pamela
    Robbiano, Maria
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2664 - 2671
  • [6] Spanning k-trees and distance signless Laplacian spectral radius of graphs
    Zhou, Sizhong
    Zhang, Yuli
    Liu, Hongxia
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 358 - 365
  • [7] On Maximum Laplacian Estrada Indices of Trees with Some Given Parameters
    Huang, Fei
    Li, Xueliang
    Wang, Shujing
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 74 (02) : 419 - 429
  • [8] On the signless Laplacian spectra of k-trees (vol 467, pg 136, 2015)
    Zhang, Minjie
    Li, Shuchao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 : 527 - 530
  • [9] More on Laplacian estrada indices of trees
    Du, Zhibin
    FILOMAT, 2012, 26 (01) : 197 - 207
  • [10] On maximum signless Laplacian Estrada index of graphs with given parameters
    Ellahi, Hamid Reza
    Fath-Tabar, Gholam Hossein
    Gholami, Ahmad
    Nasiri, Ramin
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 381 - 389