On maximum signless Laplacian Estrada indices of k-trees

被引:0
|
作者
Ning, Wenjie [1 ]
Wang, Kun [2 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Estrada index; Signless Laplacian Estrada index; Semi-edge walk; k-trees; Simplicial vertex; ZAGREB INDEXES; FOLDING DEGREE; SHARP BOUNDS; GRAPHS;
D O I
10.1016/j.disc.2019.111666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The signless Laplacian Estrada index of a graph G is defined as SLEE(G) = Sigma(n)(i=i) e(qi), where q(1), q(2), ... q(n) are the eigenvalues of the signless Laplacian matrix of G. A k-tree is either a complete graph on k vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k edges connecting it to a k-clique. Denote by T-n(k) the set of all k-trees of order n. In this paper, we characterize the graphs among T-n(k) with the first (resp. the second) largest SLEE. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On the distance signless Laplacian Estrada index of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ramane, Harishchandra
    Li, Xueliang
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (04)
  • [22] THE NORMALIZED SIGNLESS LAPLACIAN ESTRADA INDEX OF GRAPHS
    Altindag, S. B. Bozkurt
    Milovanovic, E.
    Matejic, M.
    Milovanovic, I.
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 131 - 142
  • [23] Partial k-trees with maximum chromatic number
    Chlebíková, J
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 269 - 276
  • [24] Sharp bounds of the Zagreb indices of k-trees
    John Estes
    Bing Wei
    Journal of Combinatorial Optimization, 2014, 27 : 271 - 291
  • [25] Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
    Shang, Yilun
    PLOS ONE, 2015, 10 (03):
  • [26] Sharp bounds of the Zagreb indices of k-trees
    Estes, John
    Wei, Bing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 271 - 291
  • [27] On Zagreb indices and spectral radius of partial k-trees
    Ke, Xiaoxia
    Zhou, Bo
    ARS COMBINATORIA, 2018, 140 : 183 - 188
  • [28] A sharper lower bound on the signless Laplacian Estrada index
    Zhang, Hongbing
    ARS COMBINATORIA, 2018, 139 : 19 - 26
  • [29] ON DISTANCE SIGNLESS LAPLACIAN ESTRADA INDEX AND ENERGY OF GRAPHS
    Alhevaz, Abdollah
    Baghipur, Maryam
    Pirzada, Shariefuddin
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (06): : 837 - 858
  • [30] LAPLACIAN ESTRADA INDEX OF TREES
    Ilic, Aleksandar
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (03) : 769 - 776