High accuracy FPGA activation function implementation for neural networks

被引:21
|
作者
Hajduk, Zbigniew [1 ]
机构
[1] Rzeszow Univ Technol, Ul Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
FPGA; Hyperbolic tangent; Sigmoid; Floating point arithmetic; HARDWARE IMPLEMENTATION;
D O I
10.1016/j.neucom.2017.03.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter shortly presents an FPGA implementation method of the hyperbolic tangent and sigmoid activation functions for artificial neural networks. A kind of a direct implementation of the functions is proposed. The implementation results show that the obtained accuracy of the method is relatively high compared to other published solutions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 61
页数:3
相关论文
共 50 条
  • [41] Periodic Function as Activation Function for Neural Networks
    Xu, Ding
    Guan, Yue
    Cai, Ping-ping
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNIQUES AND APPLICATIONS, AITA 2016, 2016, : 179 - 183
  • [42] Digital implementation of artificial neural networks: From VHDL description to FPGA implementation
    Izeboudjen, N
    Farah, A
    Titri, S
    Boumeridja, H
    ENGINEERING APPLICATIONS OF BIO-INSPIRED ARTIFICIAL NEURAL NETWORKS, VOL II, 1999, 1607 : 139 - 148
  • [43] A Pipelined and Scalable Dataflow Implementation of Convolutional Neural Networks on FPGA
    Bacis, Marco
    Natale, Giuseppe
    Del Sozzo, Emanuele
    Santambrogio, Marco Domenico
    2017 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2017, : 90 - 97
  • [44] Automatic Code Generation of Convolutional Neural Networks in FPGA Implementation
    Liu, Zhiqiang
    Dou, Yong
    Jiang, Jingfei
    Xu, Jinwei
    2016 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2016, : 61 - 68
  • [45] An FPGA implementation for neural networks with the FDFM processor core approach
    Ago, Yuki
    Ito, Yasuaki
    Nakano, Koji
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2013, 28 (04) : 308 - 320
  • [46] Power Amplifier Behavioral Modeling by Neural Networks and their Implementation on FPGA
    Ntoune, Roger Sandrin Ntoune
    Bahoura, Mohammed
    Park, Chan-Wang
    2012 IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2012,
  • [47] Artificial neural networks processor - A hardware implementation using a FPGA
    Ferreira, P
    Ribeiro, P
    Antunes, A
    Dias, FM
    FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, 2004, 3203 : 1084 - 1086
  • [48] FPGA Implementation of Harmonic Detection methods using Neural Networks
    Naoussi, Serge Raoul Dzonde
    Berviller, Herve
    Blonde, Jean Philippe
    Kom, Charles Hubert
    Kom, Martin
    Braun, Francis
    EPE: 2009 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, VOLS 1-9, 2009, : 2497 - +
  • [49] An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification
    Huang, Xiaoyu
    Jones, Edward
    Zhang, Siru
    Xie, Shouyu
    Furber, Steve
    Goulermas, Yannis
    Marsden, Edward
    Baistow, Ian
    Mitra, Srinjoy
    Hamilton, Alister
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [50] Implementation of FPGA-based Accelerator for Deep Neural Networks
    Tsai, Tsung-Han
    Ho, Yuan-Chen
    Sheu, Ming-Hwa
    2019 IEEE 22ND INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2019,