High accuracy FPGA activation function implementation for neural networks

被引:21
|
作者
Hajduk, Zbigniew [1 ]
机构
[1] Rzeszow Univ Technol, Ul Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
FPGA; Hyperbolic tangent; Sigmoid; Floating point arithmetic; HARDWARE IMPLEMENTATION;
D O I
10.1016/j.neucom.2017.03.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter shortly presents an FPGA implementation method of the hyperbolic tangent and sigmoid activation functions for artificial neural networks. A kind of a direct implementation of the functions is proposed. The implementation results show that the obtained accuracy of the method is relatively high compared to other published solutions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 61
页数:3
相关论文
共 50 条
  • [21] Design and Implementation of Neural Networks Neurons with RadBas, LogSig, and TanSig Activation Functions on FPGA
    Sahin, I.
    Koyuncu, I.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 120 (04) : 51 - 54
  • [22] Hardware implementation of radial-basis neural networks with Gaussian activation functions on FPGA
    Shymkovych, Volodymyr
    Telenyk, Sergii
    Kravets, Petro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (15): : 9467 - 9479
  • [23] Efficient VLSI Implementation of Neural Networks With Hyperbolic Tangent Activation Function
    Zamanlooy, Babak
    Mirhassani, Mitra
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2014, 22 (01) : 39 - 48
  • [24] High-Accuracy Gaussian Function Generator for Neural Networks
    Popa, Cosmin Radu
    ELECTRONICS, 2023, 12 (01)
  • [25] A High-Accuracy Implementation for Softmax Layer in Deep Neural Networks
    Alabassy, Bassma
    Safar, Mona
    El-Kharashi, M. Watheq
    2020 15TH IEEE INTERNATIONAL CONFERENCE ON DESIGN & TECHNOLOGY OF INTEGRATED SYSTEMS IN NANOSCALE ERA (DTIS 2020), 2020,
  • [26] A high bit resolution FPGA implementation of a FNN with a new algorithm for the activation function
    Ferreira, Pedro
    Ribeiro, Pedro
    Antunes, Ana
    Dias, Fernando Morgado
    NEUROCOMPUTING, 2007, 71 (1-3) : 71 - 77
  • [27] FPGA Realization of Activation Function for Neural Network
    Pan, Shang-Ping
    Li, ZhaoFang
    Huang, Yu-Jung
    Lin, Wei-Cheng
    2018 7TH IEEE INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2018, : 125 - 126
  • [28] An FPGA implementation of Bayesian inference with spiking neural networks
    Li, Haoran
    Wan, Bo
    Fang, Ying
    Li, Qifeng
    Liu, Jian K.
    An, Lingling
    FRONTIERS IN NEUROSCIENCE, 2024, 17
  • [29] Acceleration and implementation of convolutional neural networks based on FPGA
    Zhao, Sijie
    Gao, Shangshang
    Wang, Rugang
    Wang, Yuanyuan
    Zhou, Feng
    Guo, Naihong
    DIGITAL SIGNAL PROCESSING, 2023, 141
  • [30] IMPLEMENTATION OF THE NEURAL NETWORKS FOR ADAPTIVE CONTROL SYSTEM ON FPGA
    Kondratenko, Yuriy Panteliyovych
    Gordienko, Evgeniy
    ANNALS OF DAAAM FOR 2012 & PROCEEDINGS OF THE 23RD INTERNATIONAL DAAAM SYMPOSIUM - INTELLIGENT MANUFACTURING AND AUTOMATION - FOCUS ON SUSTAINABILITY, 2012, 23 : 389 - 392