An FPGA Implementation of Convolutional Spiking Neural Networks for Radioisotope Identification

被引:5
|
作者
Huang, Xiaoyu [1 ]
Jones, Edward [2 ]
Zhang, Siru [3 ]
Xie, Shouyu [1 ]
Furber, Steve [2 ]
Goulermas, Yannis [3 ]
Marsden, Edward [4 ]
Baistow, Ian [4 ]
Mitra, Srinjoy [1 ]
Hamilton, Alister [1 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[2] Univ Manchester, Manchester, Lancs, England
[3] Univ Liverpool, Liverpool, Merseyside, England
[4] Kromek Grp Plc, Durham, England
关键词
event-based signal processing; low power; radioisotope identification; convolutional spiking neural networks; FPGA; SpiNNaker;
D O I
10.1109/ISCAS51556.2021.9401412
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper details FPGA implementation methodology for Convolutional Spiking Neural Networks (CSNN) and applies this methodology to low-power radioisotope identification using high resolution data. A power consumption of 75 mW has been achieved on an FPGA implementation of a CSNN, with the inference accuracy of 90.62% on a synthetic dataset. The chip validation method is presented. Prototyping was accelerated by evaluating SNN parameters using SpiNNaker neuromorphic platform.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Hardware Implementation of Spiking Neural Networks on FPGA
    Han, Jianhui
    Li, Zhaolin
    Zheng, Weimin
    Zhang, Youhui
    TSINGHUA SCIENCE AND TECHNOLOGY, 2020, 25 (04) : 479 - 486
  • [2] Hardware Implementation of Spiking Neural Networks on FPGA
    Jianhui Han
    Zhaolin Li
    Weimin Zheng
    Youhui Zhang
    Tsinghua Science and Technology, 2020, 25 (04) : 479 - 486
  • [3] An FPGA implementation of Bayesian inference with spiking neural networks
    Li, Haoran
    Wan, Bo
    Fang, Ying
    Li, Qifeng
    Liu, Jian K.
    An, Lingling
    FRONTIERS IN NEUROSCIENCE, 2024, 17
  • [4] Development of FPGA Toolbox for Implementation of Spiking Neural Networks
    Wu, QingXiang
    Liao, Xiaodong
    Huang, Xi
    Cai, Rongtai
    Cai, Jianyong
    Liu, Jinqing
    2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 806 - 810
  • [5] Fully parallel implementation of spiking neural networks on FPGA
    Bako, L.
    Brassai, S. T.
    Szekely, I.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL III: INDUSTRIAL AUTOMATION AND CONTROL, 2006, : 135 - 142
  • [6] FPGA Implementation and Acceleration of Convolutional Neural Networks
    Pisharody, Jayanth N.
    Pranav, K. B.
    Ranjitha, M.
    Rajeshwari, B.
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [7] Efficient Implementation of Convolutional Neural Networks on FPGA
    Hadnagy, A.
    Feher, B.
    Kovacshazy, T.
    2018 19TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2018, : 359 - 364
  • [8] Noise Convolutional Neural Networks and FPGA Implementation
    Munakala, Atsuki
    Nakahara, IIiroki
    Sato, Shimpei
    2019 IEEE 49TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2019, : 85 - 90
  • [9] FPGA Implementation of Izhikevich Spiking Neural Networks for Character Recognition
    Rice, Kenneth L.
    Bhuiyan, Mohammad A.
    Taha, Tarek M.
    Vutsinas, Christopher N.
    Smith, Melissa C.
    2009 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS, 2009, : 451 - +
  • [10] Toward the Optimal Design and FPGA Implementation of Spiking Neural Networks
    Guo, Wenzhe
    Yantir, Hasan Erdem
    Fouda, Mohammed E.
    Eltawil, Ahmed M.
    Salama, Khaled Nabil
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3988 - 4002