Realization of a multinode quantum network of remote solid-state qubits

被引:391
|
作者
Pompili, M. [1 ,2 ]
Hermans, S. L. N. [1 ,2 ]
Baier, S. [1 ,2 ,3 ]
Beukers, H. K. C. [1 ,2 ]
Humphreys, P. C. [1 ,2 ,4 ]
Schouten, R. N. [1 ,2 ]
Vermeulen, R. F. L. [1 ,2 ]
Tiggelman, M. J. [1 ,2 ,5 ]
Martins, L. dos Santos [1 ,2 ]
Dirkse, B. [1 ,2 ]
Wehner, S. [1 ,2 ]
Hanson, R. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[4] DeepMind, London, England
[5] QBlox, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
HERALDED ENTANGLEMENT; ATOMS;
D O I
10.1126/science.abg1919
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.
引用
收藏
页码:259 / +
页数:38
相关论文
共 50 条
  • [41] Quantum state transfer between remote nanomechanical qubits
    Hong, Fang-Yu
    Chen, Lei
    Fu, Jing-Li
    Zhu, Zhi-Yan
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (05):
  • [42] Multinode State Transfer and Nonlocal State Preparation via a Unidirectional Quantum Network
    Ai, Hao
    Fang, Ying-Yu
    Feng, Cheng-Rui
    Peng, Zhihui
    Xiang, Ze-Liang
    PHYSICAL REVIEW APPLIED, 2022, 17 (05)
  • [43] Demonstration of entanglement-by-measurement of solid-state qubits
    Pfaff W.
    Taminiau T.H.
    Robledo L.
    Bernien H.
    Markham M.
    Twitchen D.J.
    Hanson R.
    Pfaff, W. (r.hanson@tudelft.nl), 1600, Nature Publishing Group (09): : 29 - 33
  • [44] Path integral approach to dissipation in solid-state qubits
    Reina, John H.
    Bririd, Adel
    MICROELECTRONICS JOURNAL, 2008, 39 (3-4) : 696 - 698
  • [45] Characterization of coherent impurity effects in solid-state qubits
    Paladino, E.
    Sassetti, M.
    Falci, G.
    Weiss, U.
    PHYSICAL REVIEW B, 2008, 77 (04):
  • [46] Probing the Coherence of Solid-State Qubits at Avoided Crossings
    Onizhuk, Mykyta
    Miao, Kevin C.
    Blanton, Joseph P.
    Ma, He
    Anderson, Christopher P.
    Bourassa, Alexandre
    Awschalom, David D.
    Galli, Giulia
    PRX QUANTUM, 2021, 2 (01):
  • [47] Current fluctuation spectrum in dissipative solid-state qubits
    Aguado, R
    Brandes, T
    EUROPEAN PHYSICAL JOURNAL B, 2004, 40 (04): : 357 - 363
  • [48] Current fluctuation spectrum in dissipative solid-state qubits
    R. Aguado
    T. Brandes
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 40 : 357 - 363
  • [49] Decoherence and gate performance of coupled solid-state qubits
    Storcz, MJ
    Wilhelm, FK
    PHYSICAL REVIEW A, 2003, 67 (04)
  • [50] Demonstration of entanglement-by-measurement of solid-state qubits
    Pfaff, Wolfgang
    Taminiau, Tim H.
    Robledo, Lucio
    Bernien, Hannes
    Markham, Matthew
    Twitchen, Daniel J.
    Hanson, Ronald
    NATURE PHYSICS, 2013, 9 (01) : 29 - 33