Realization of a multinode quantum network of remote solid-state qubits

被引:391
|
作者
Pompili, M. [1 ,2 ]
Hermans, S. L. N. [1 ,2 ]
Baier, S. [1 ,2 ,3 ]
Beukers, H. K. C. [1 ,2 ]
Humphreys, P. C. [1 ,2 ,4 ]
Schouten, R. N. [1 ,2 ]
Vermeulen, R. F. L. [1 ,2 ]
Tiggelman, M. J. [1 ,2 ,5 ]
Martins, L. dos Santos [1 ,2 ]
Dirkse, B. [1 ,2 ]
Wehner, S. [1 ,2 ]
Hanson, R. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[4] DeepMind, London, England
[5] QBlox, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
HERALDED ENTANGLEMENT; ATOMS;
D O I
10.1126/science.abg1919
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.
引用
收藏
页码:259 / +
页数:38
相关论文
共 50 条
  • [21] Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits
    Wang, Hong-Fu
    Jiang, Xin-Xin
    Zhang, Shou
    Yeon, Kyu-Hwang
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (11)
  • [22] Entanglement of solid-state qubits by measurement
    Ruskov, R
    Korotkov, AN
    PHYSICAL REVIEW B, 2003, 67 (24):
  • [23] Solid-state qubits under control
    D. V. Averin
    Nature, 1999, 398 : 748 - 749
  • [24] Perspectives on solid-state flying qubits
    Andrea Bertoni
    Journal of Computational Electronics, 2007, 6 : 67 - 72
  • [25] Perspectives on solid-state flying qubits
    Bertoni, Andrea
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2007, 6 (1-3) : 67 - 72
  • [26] Readout of solid-state charge qubits
    Hines, C
    Wang, JB
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 155 - 158
  • [27] Implementation of standard quantum error-correction codes for solid-state qubits
    Tanamoto, Tetsufumi
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [28] A faithful solid-state spin-wave quantum memory for polarization qubits
    Jin, Ming
    Ma, You-Zhi
    Zhou, Zong-Quan
    Li, Chuan-Feng
    Guo, Guang-Can
    SCIENCE BULLETIN, 2022, 67 (07) : 676 - 678
  • [29] Experimental realization of universal geometric quantum gates with solid-state spins
    Zu, C.
    Wang, W. -B.
    He, L.
    Zhang, W. -G.
    Dai, C. -Y.
    Wang, F.
    Duan, L. -M.
    NATURE, 2014, 514 (7520) : 72 - +
  • [30] Realization of Reliable Solid-State Quantum Memory for Photonic Polarization Qubit
    Zhou, Zong-Quan
    Lin, Wei-Bin
    Yang, Ming
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW LETTERS, 2012, 108 (19)