Realization of a multinode quantum network of remote solid-state qubits

被引:391
|
作者
Pompili, M. [1 ,2 ]
Hermans, S. L. N. [1 ,2 ]
Baier, S. [1 ,2 ,3 ]
Beukers, H. K. C. [1 ,2 ]
Humphreys, P. C. [1 ,2 ,4 ]
Schouten, R. N. [1 ,2 ]
Vermeulen, R. F. L. [1 ,2 ]
Tiggelman, M. J. [1 ,2 ,5 ]
Martins, L. dos Santos [1 ,2 ]
Dirkse, B. [1 ,2 ]
Wehner, S. [1 ,2 ]
Hanson, R. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[4] DeepMind, London, England
[5] QBlox, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
HERALDED ENTANGLEMENT; ATOMS;
D O I
10.1126/science.abg1919
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.
引用
收藏
页码:259 / +
页数:38
相关论文
共 50 条
  • [31] Experimental Realization of Robust Geometric Quantum Gates with Solid-State Spins
    Huang, Y. -Y.
    Wu, Y. -K.
    Wang, F.
    Hou, P. -Y.
    Wang, W. -B.
    Zhang, W. -G.
    Lian, W. -Q.
    Liu, Y. -Q.
    Wang, H. -Y.
    Zhang, H. -Y.
    He, L.
    Chang, X. -Y.
    Xu, Y.
    Duan, L. -M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (01)
  • [32] Experimental realization of universal geometric quantum gates with solid-state spins
    C. Zu
    W.-B. Wang
    L. He
    W.-G. Zhang
    C.-Y. Dai
    F. Wang
    L.-M. Duan
    Nature, 2014, 514 : 72 - 75
  • [33] Dephasing of solid-state qubits at optimal points
    Makhlin, Y
    Shnirman, A
    PHYSICAL REVIEW LETTERS, 2004, 92 (17) : 178301 - 1
  • [34] Rare-earth solid-state qubits
    S. Bertaina
    S. Gambarelli
    A. Tkachuk
    I. N. Kurkin
    B. Malkin
    A. Stepanov
    B. Barbara
    Nature Nanotechnology, 2007, 2 : 39 - 42
  • [35] Projective measurement scheme for solid-state qubits
    Tian, L
    Lloyd, S
    Orlando, TP
    PHYSICAL REVIEW B, 2003, 67 (22)
  • [36] Defects in AlN as candidates for solid-state qubits
    Varley, J. B.
    Janotti, A.
    Van de Walle, C. G.
    PHYSICAL REVIEW B, 2016, 93 (16)
  • [37] Rare-earth solid-state qubits
    Bertaina, S.
    Gambarelli, S.
    Tkachuk, A.
    Kurkin, I. N.
    Malkin, B.
    Stepanov, A.
    Barbara, B.
    NATURE NANOTECHNOLOGY, 2007, 2 (01) : 39 - 42
  • [38] Remote entanglement distribution in a quantum network via multinode indistinguishability of photons
    Wang, Yan
    Hao, Ze-Yan
    Liu, Zheng-Hao
    Sun, Kai
    Xu, Jin-Shi
    Li, Chuan-Feng
    Guo, Guang-Can
    Castellini, Alessia
    Bellomo, Bruno
    Compagno, Giuseppe
    Lo Franco, Rosario
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [39] Efficient cavity-assisted storage of photonic qubits in a solid-state quantum memory
    Durant, Stefano
    Wengerowsky, Soren
    Feldmann, Leo
    Seri, Alessandro
    Casabone, Bernardo
    De Riedmatten, Hugues
    OPTICS EXPRESS, 2024, 32 (15): : 26884 - 26895
  • [40] Quantum state transfer between remote nanomechanical qubits
    Fang-Yu Hong
    Lei Chen
    Jing-Li Fu
    Zhi-Yan Zhu
    The European Physical Journal D, 2015, 69