Realization of a multinode quantum network of remote solid-state qubits

被引:391
|
作者
Pompili, M. [1 ,2 ]
Hermans, S. L. N. [1 ,2 ]
Baier, S. [1 ,2 ,3 ]
Beukers, H. K. C. [1 ,2 ]
Humphreys, P. C. [1 ,2 ,4 ]
Schouten, R. N. [1 ,2 ]
Vermeulen, R. F. L. [1 ,2 ]
Tiggelman, M. J. [1 ,2 ,5 ]
Martins, L. dos Santos [1 ,2 ]
Dirkse, B. [1 ,2 ]
Wehner, S. [1 ,2 ]
Hanson, R. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[4] DeepMind, London, England
[5] QBlox, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
HERALDED ENTANGLEMENT; ATOMS;
D O I
10.1126/science.abg1919
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a quantum network control stack.
引用
收藏
页码:259 / +
页数:38
相关论文
共 50 条
  • [1] Remote Entanglement of Superconducting Qubits via Solid-State Spin Quantum
    Kurokawa, Hodaka
    Yamamoto, Moyuki
    Sekiguchi, Yuhei
    Kosaka, Hideo
    PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [2] Quantum tomography for solid-state qubits
    Liu, YX
    Wei, LF
    Nori, F
    EUROPHYSICS LETTERS, 2004, 67 (06): : 874 - 880
  • [3] Geometric quantum computation on solid-state qubits
    Choi, MS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (46) : 7823 - 7833
  • [4] Noisy quantum measurement of solid-state qubits
    Korotkov, AN
    NOISE AND INFORMATION IN NANOELECTRONICS, SENSORS AND STANDARDS, 2003, 5115 : 386 - 400
  • [5] Interfacing quantum-optical and solid-state qubits
    Tian, L
    Rabl, P
    Blatt, R
    Zoller, P
    PHYSICAL REVIEW LETTERS, 2004, 92 (24) : 247902 - 1
  • [6] Quantum computation - Solid-state qubits under control
    Averin, DV
    NATURE, 1999, 398 (6730) : 748 - 749
  • [7] Controlling stationary and flying qubits for solid-state quantum networks
    Atature, Mete
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [8] Engineering the quantum-classical interface of solid-state qubits
    Reilly, David J.
    NPJ QUANTUM INFORMATION, 2015, 1
  • [9] Noisy quantum measurement of solid-state qubits: Bayesian approach
    Korotkov, AN
    QUANTUM NOISE IN MESOSCOPIC PHYSICS, 2003, 97 : 205 - 228
  • [10] Quantum control of electron and nuclear spin qubits in the solid-state
    Dutt, M. V. Gurudev
    Childress, L.
    Togan, E.
    Taylor, J. M.
    Jiang, L.
    Zibrov, A. S.
    Hemmer, P. R.
    Jelezko, F.
    Wrachtrup, J.
    Lukin, M. D.
    ATOMIC PHYSICS 20, 2006, 869 : 119 - +