Analysis of the T-point-Hopf bifurcation in the Lorenz system

被引:15
|
作者
Algaba, A. [1 ]
Fernandez-Sanchez, F. [2 ]
Merino, M. [1 ]
Rodriguez-Luis, A. J. [2 ]
机构
[1] Univ Huelva, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, ETS Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
Lorenz system; T-point; Global connection; Homoclinic orbit; Heteroclinic orbit; Hopf bifurcation; CLOSED CURVES; HOMOCLINIC ORBITS; ZERO EIGENVALUE; SOLITARY PULSES; CHUAS EQUATION; VECTOR-FIELDS; MODEL; CHAOS; CONSTRUCTION; STABILITY;
D O I
10.1016/j.cnsns.2014.09.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show numerically the existence of a T-point-Hopf bifurcation in the Lorenz system. This codimension-three degeneracy occurs when the nontrivial equilibria involved in the T-point heteroclinic loop undergo a subcritical Hopf bifurcation. Shil'nikov-Hopf bifurcations of the heteroclinic and the homoclinic orbits of the nontrivial equilibria are also present. Moreover, we consider a theoretical model, based on the construction of a Poincare map, that describes the global behavior close to that T-point-Hopf bifurcation. An excellent agreement between the results provided by our theoretical model and those obtained numerically for the Lorenz system is found. Specifically, the model is able to give an explanation of the complex distribution of homoclinic connections to the origin previously described in the literature. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:676 / 691
页数:16
相关论文
共 50 条
  • [41] Hopf Bifurcation Analysis in a Novel Nonlinear System
    Du Wenju
    Zhang Jiangang
    Yu Jianning
    An Xinlei
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 773 - 777
  • [42] Hopf bifurcation analysis of a rotor/seal system
    Ding, Q
    Cooper, JE
    NOISE AND VIBRATION ENGINEERING, VOLS 1 - 3, PROCEEDINGS, 2001, : 997 - 1003
  • [43] Stability and Hopf bifurcation analysis of a new system
    Huang, Kuifei
    Yang, Qigui
    CHAOS SOLITONS & FRACTALS, 2009, 39 (02) : 567 - 578
  • [44] Hopf bifurcation analysis of a complicated hyperchaotic system
    Zhuang, K. (zhkj123@163.com), 1600, ICIC Express Letters Office (08):
  • [45] Hopf bifurcation analysis of a rotor/seal system
    Ding, Q
    Cooper, JE
    Leung, AYT
    JOURNAL OF SOUND AND VIBRATION, 2002, 252 (05) : 817 - 833
  • [46] Hopf Bifurcation Analysis for a Novel Hyperchaotic System
    Zhuang, Kejun
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (01):
  • [47] Bifurcation analysis and chaos in a discrete reduced Lorenz system
    Elabbasy, E. M.
    Elsadany, A. A.
    Zhang, Yue
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 184 - 194
  • [48] HOPF BIFURCATION FOR MAPS AT A POINT OF RESONANCE
    LEMAIREBODY, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (09): : 727 - 730
  • [49] Bifurcation control of Lorenz system
    Chen Pengnian
    Qin Huashu
    Ye Xudong
    PROCEEDINGS OF THE 24TH CHINESE CONTROL CONFERENCE, VOLS 1 AND 2, 2005, : 140 - 143
  • [50] Hopf bifurcations in an extended Lorenz system
    Zhiming Zhou
    Gheorghe Tigan
    Zhiheng Yu
    Advances in Difference Equations, 2017