Analysis of the T-point-Hopf bifurcation in the Lorenz system

被引:15
|
作者
Algaba, A. [1 ]
Fernandez-Sanchez, F. [2 ]
Merino, M. [1 ]
Rodriguez-Luis, A. J. [2 ]
机构
[1] Univ Huelva, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, ETS Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
Lorenz system; T-point; Global connection; Homoclinic orbit; Heteroclinic orbit; Hopf bifurcation; CLOSED CURVES; HOMOCLINIC ORBITS; ZERO EIGENVALUE; SOLITARY PULSES; CHUAS EQUATION; VECTOR-FIELDS; MODEL; CHAOS; CONSTRUCTION; STABILITY;
D O I
10.1016/j.cnsns.2014.09.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show numerically the existence of a T-point-Hopf bifurcation in the Lorenz system. This codimension-three degeneracy occurs when the nontrivial equilibria involved in the T-point heteroclinic loop undergo a subcritical Hopf bifurcation. Shil'nikov-Hopf bifurcations of the heteroclinic and the homoclinic orbits of the nontrivial equilibria are also present. Moreover, we consider a theoretical model, based on the construction of a Poincare map, that describes the global behavior close to that T-point-Hopf bifurcation. An excellent agreement between the results provided by our theoretical model and those obtained numerically for the Lorenz system is found. Specifically, the model is able to give an explanation of the complex distribution of homoclinic connections to the origin previously described in the literature. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:676 / 691
页数:16
相关论文
共 50 条
  • [31] Hopf bifurcation analysis of the Lu system
    Yu, YG
    Zhang, SC
    CHAOS SOLITONS & FRACTALS, 2004, 21 (05) : 1215 - 1220
  • [32] ANALYTICAL INVESTIGATION OF THE HOPF-BIFURCATION IN THE LORENZ MODEL
    PADE, J
    RAUH, A
    TSAROUHAS, G
    PHYSICS LETTERS A, 1986, 115 (03) : 93 - 96
  • [33] Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems
    Antonio Algaba
    María C. Domínguez-Moreno
    Manuel Merino
    Alejandro J. Rodríguez-Luis
    Nonlinear Dynamics, 2015, 79 : 885 - 902
  • [34] Study of the Hopf bifurcation in the Lorenz, Chen and Lu systems
    Algaba, Antonio
    Dominguez-Moreno, Maria C.
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    NONLINEAR DYNAMICS, 2015, 79 (02) : 885 - 902
  • [35] Hopf Bifurcation of a Nonlinear System Derived from Lorenz System Using Centre Manifold Approach
    Salleh, Z.
    Tee, L. S.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 1 - 13
  • [36] Hopf Bifurcation of a Nonlinear System Derived from Lorenz System Using Normal Form Theory
    Salleh, Z.
    Tee, L. S.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 55 (03): : 122 - 132
  • [37] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [38] Analytical treatment of the delayed feedback controlled Lorenz system close to a subcritical Hopf bifurcation
    Pyragas, V.
    Pyragas, K.
    LITHUANIAN JOURNAL OF PHYSICS, 2008, 48 (01): : 5 - 16
  • [39] Determining of Hopf Bifurcation Point and its Stability Analysis in an Induction Motor Drive System
    Li, Hongmei
    Wang, Xiaochen
    Li, Wensheng
    ICEMS 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1- 8, 2008, : 1153 - 1156
  • [40] Numerical algorithm for determining Hopf bifurcation point of nonlinear system
    Li, Dexin
    Lu, Yanjun
    Jiang, Lijun
    COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1755 - +