Analysis of the T-point-Hopf bifurcation in the Lorenz system

被引:15
|
作者
Algaba, A. [1 ]
Fernandez-Sanchez, F. [2 ]
Merino, M. [1 ]
Rodriguez-Luis, A. J. [2 ]
机构
[1] Univ Huelva, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, ETS Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
Lorenz system; T-point; Global connection; Homoclinic orbit; Heteroclinic orbit; Hopf bifurcation; CLOSED CURVES; HOMOCLINIC ORBITS; ZERO EIGENVALUE; SOLITARY PULSES; CHUAS EQUATION; VECTOR-FIELDS; MODEL; CHAOS; CONSTRUCTION; STABILITY;
D O I
10.1016/j.cnsns.2014.09.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show numerically the existence of a T-point-Hopf bifurcation in the Lorenz system. This codimension-three degeneracy occurs when the nontrivial equilibria involved in the T-point heteroclinic loop undergo a subcritical Hopf bifurcation. Shil'nikov-Hopf bifurcations of the heteroclinic and the homoclinic orbits of the nontrivial equilibria are also present. Moreover, we consider a theoretical model, based on the construction of a Poincare map, that describes the global behavior close to that T-point-Hopf bifurcation. An excellent agreement between the results provided by our theoretical model and those obtained numerically for the Lorenz system is found. Specifically, the model is able to give an explanation of the complex distribution of homoclinic connections to the origin previously described in the literature. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:676 / 691
页数:16
相关论文
共 50 条
  • [21] Hopf Bifurcation Analysis and Existence of Heteroclinic Orbit and Homoclinic Orbit in an Extended Lorenz System
    Aritra Das
    Soumya Das
    Pritha Das
    Differential Equations and Dynamical Systems, 2024, 32 : 33 - 49
  • [22] Hopf Bifurcation Analysis and Existence of Heteroclinic Orbit and Homoclinic Orbit in an Extended Lorenz System
    Das, Aritra
    Das, Soumya
    Das, Pritha
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (01) : 33 - 49
  • [23] Global bifurcation analysis of the Lorenz system
    Gaiko, Valery A.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2014, 7 (06): : 429 - 434
  • [24] Hopf bifurcation of the generalized Lorenz canonical form
    Li, Tiecheng
    Chen, Guanrong
    Tang, Yun
    Yang, Lijun
    NONLINEAR DYNAMICS, 2007, 47 (04) : 367 - 375
  • [25] Hopf Bifurcation of the Generalized Lorenz Canonical Form
    Tiecheng Li
    Guanrong Chen
    Yun Tang
    Lijun Yang
    Nonlinear Dynamics, 2007, 47 : 367 - 375
  • [26] Stability and Zero-Hopf Bifurcation Analysis of the Lorenz-Stenflo System Using Symbolic Methods
    Huang, Bo
    Li, Xiaoliang
    Niu, Wei
    Xie, Shaofen
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2023, 2023, 14139 : 183 - 198
  • [27] HOPF BIFURCATION AND NEW SINGULAR ORBITS COINED IN A LORENZ-LIKE SYSTEM
    Wang, Haijun
    Li, Xianyi
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (05): : 1307 - 1325
  • [28] Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation
    Pyragas, V
    Pyragas, K
    PHYSICAL REVIEW E, 2006, 73 (03):
  • [29] Bifurcation analysis and Hopf bifurcation control of a motor system
    Zhang, Z.-H. (zhangzhonghua1979@126.com), 2013, China Ordnance Industry Corporation (34):
  • [30] Hopf bifurcation analysis of the Liu system
    Zhou, Xiaobing
    Wu, Yue
    Li, Yi
    Wei, Zhengxi
    CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1385 - 1391