Analysis of the T-point-Hopf bifurcation in the Lorenz system

被引:15
|
作者
Algaba, A. [1 ]
Fernandez-Sanchez, F. [2 ]
Merino, M. [1 ]
Rodriguez-Luis, A. J. [2 ]
机构
[1] Univ Huelva, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, ETS Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
Lorenz system; T-point; Global connection; Homoclinic orbit; Heteroclinic orbit; Hopf bifurcation; CLOSED CURVES; HOMOCLINIC ORBITS; ZERO EIGENVALUE; SOLITARY PULSES; CHUAS EQUATION; VECTOR-FIELDS; MODEL; CHAOS; CONSTRUCTION; STABILITY;
D O I
10.1016/j.cnsns.2014.09.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show numerically the existence of a T-point-Hopf bifurcation in the Lorenz system. This codimension-three degeneracy occurs when the nontrivial equilibria involved in the T-point heteroclinic loop undergo a subcritical Hopf bifurcation. Shil'nikov-Hopf bifurcations of the heteroclinic and the homoclinic orbits of the nontrivial equilibria are also present. Moreover, we consider a theoretical model, based on the construction of a Poincare map, that describes the global behavior close to that T-point-Hopf bifurcation. An excellent agreement between the results provided by our theoretical model and those obtained numerically for the Lorenz system is found. Specifically, the model is able to give an explanation of the complex distribution of homoclinic connections to the origin previously described in the literature. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:676 / 691
页数:16
相关论文
共 50 条
  • [1] Analysis of the T-point-Hopf bifurcation
    Fernandez-Sanchez, F.
    Freire, E.
    Rodriguez-Luis, A. J.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (03) : 292 - 305
  • [2] Hopf Bifurcation Analysis of a Modified Lorenz System
    Tee, Loong Soon
    Salleh, Zabidin
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 158 - 167
  • [3] ANALYSIS OF THE T-POINT-HOPF BIFURCATION WITH Z2- SYMMETRY. APPLICATION TO CHUA'S EQUATION
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04): : 979 - 993
  • [4] Hopf bifurcation analysis in a Lorenz-type system
    Li, Hongwei
    Wang, Miao
    NONLINEAR DYNAMICS, 2013, 71 (1-2) : 235 - 240
  • [5] Hopf bifurcation analysis in the Lorenz-type system
    Yang Qigui
    Liu Mengying
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 601 - +
  • [6] Hopf bifurcation analysis in a Lorenz-type system
    Hongwei Li
    Miao Wang
    Nonlinear Dynamics, 2013, 71 : 235 - 240
  • [7] Hopf bifurcation analysis and bifurcation control of a lorenz-like system
    Zhang, Zhonghua
    Fu, Jingchao
    Deng, Guannan
    Complex Systems and Complexity Science, 2015, 12 (01) : 96 - 103
  • [8] Hopf bifurcation analysis and amplitude control of the modified Lorenz system
    Wang, Xuedi
    Deng, Lianwang
    Zhang, Wenli
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 333 - 344
  • [9] Hopf bifurcation analysis in the T system
    Jiang, Bo
    Han, Xiujing
    Bi, Qinsheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 522 - 527
  • [10] Zero–Hopf bifurcation in a hyperchaotic Lorenz system
    Lorena Cid-Montiel
    Jaume Llibre
    Cristina Stoica
    Nonlinear Dynamics, 2014, 75 : 561 - 566