Phonon Anharmonicity of Tungsten Disulfide

被引:14
|
作者
Peng, Ya-Kang [1 ,2 ,3 ]
Cao, Zi-Yu [3 ]
Chen, Liu-Cheng [3 ]
Dai, Ning [1 ]
Sun, Yan [1 ]
Chen, Xiao-Jia [3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 41期
基金
国家重点研发计划;
关键词
DEPENDENT RAMAN-SPECTROSCOPY; TRANSITION-METAL DICHALCOGENIDES; ELECTRONIC-PROPERTIES; TEMPERATURE; SCATTERING; MOS2; SHIFTS;
D O I
10.1021/acs.jpcc.9b07553
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent studies demonstrate that 2H-WS2 is an excellent candidate for further applications in the electronics, spintronics, and optoelectronics. The details of phonon scattering processes associated with the thermal properties of a material are crucial for commercial applications. Here, we report an experimental study of the temperature-dependent Raman spectra of 2H-WS2 over a wide range from 3.6 to 850 K. The nonlinear temperature-dependent behavior corresponding to the phonon anharmonicity is estimated from both the frequency and linewidth of E-2g(2), E-2g(1), and A(1g) modes. It is found that the three-phonon process is dominant in the phonon softening and linewidth broadening in the whole temperature range. The four-phonon process can be detected and is even stronger than the three-phonon process at high temperatures. The obtained E-2g(1) mode is insensitive to the anharmonic effect, whereas the E-2g(2) mode is most sensitive. The phonon anharmonicity is suggested to mainly originate from the interaction between acoustic phonon and optical phonon. Understanding the phonon anharmonicity in 2H-WS2 is helpful for further applications of nanodevices.
引用
收藏
页码:25509 / 25514
页数:6
相关论文
共 50 条
  • [41] EFFECT OF ANHARMONICITY ON PHONON SPECTRUM NEAR A POINT OF DEGENERACY
    KAGAN, Y
    ZHERNOV, AP
    SOVIET PHYSICS JETP-USSR, 1965, 21 (03): : 646 - &
  • [42] The effect of phonon anharmonicity on the thermodynamic properties of nonmetallic solid
    Bodryakov, VY
    Povzner, AA
    Safonov, IV
    HIGH TEMPERATURE, 2005, 43 (06) : 859 - 869
  • [43] Phonon anharmonicity in binary chalcogenides for efficient energy harvesting
    Parajuli, P.
    Bhattacharya, S.
    Rao, R.
    Rao, A. M.
    MATERIALS HORIZONS, 2022, 9 (06) : 1602 - 1622
  • [44] Anharmonicity due to Electron-Phonon Coupling in Magnetite
    Hoesch, Moritz
    Piekarz, Przemyslaw
    Bosak, Alexey
    Le Tacon, Mathieu
    Krisch, Michael
    Kozlowski, Andrzej
    Oles, Andrzej M.
    Parlinski, Krzysztof
    PHYSICAL REVIEW LETTERS, 2013, 110 (20)
  • [45] Phonon anharmonicity and Gruneisen parameters of alpha-plutonium
    Filanovich, A. N.
    Povzner, A. A.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 467 : 894 - 898
  • [46] Phonon interactions in zeolites mediated by anharmonicity and adsorbed molecules
    Chen, Chia-Yi
    Kopelevich, Dmitry I.
    MOLECULAR SIMULATION, 2008, 34 (02) : 155 - 167
  • [47] Phonon anharmonicity: a pertinent review of recent progress and perspective
    Bin Wei
    Qiyang Sun
    Chen Li
    Jiawang Hong
    Science China(Physics,Mechanics & Astronomy), 2021, (11) : 14 - 47
  • [48] The effect of phonon anharmonicity on the thermophysical and elastic properties of palladium
    A. A. Povzner
    A. N. Filanovich
    E. S. Koneva
    High Temperature, 2010, 48 : 358 - 362
  • [49] DAMPING OF A 2-PHONON SPECTRUM WITH CUBIC ANHARMONICITY
    WESSELINOWA, JM
    PHYSICS LETTERS A, 1987, 122 (01) : 64 - 66
  • [50] Phonon Anharmonicity in Few-Layer Black Phosphorus
    Tristant, Damien
    Cupo, Andrew
    Ling, Xi
    Meunier, Vincent
    ACS NANO, 2019, 13 (09) : 10456 - 10468