Phonon Anharmonicity of Tungsten Disulfide

被引:14
|
作者
Peng, Ya-Kang [1 ,2 ,3 ]
Cao, Zi-Yu [3 ]
Chen, Liu-Cheng [3 ]
Dai, Ning [1 ]
Sun, Yan [1 ]
Chen, Xiao-Jia [3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 41期
基金
国家重点研发计划;
关键词
DEPENDENT RAMAN-SPECTROSCOPY; TRANSITION-METAL DICHALCOGENIDES; ELECTRONIC-PROPERTIES; TEMPERATURE; SCATTERING; MOS2; SHIFTS;
D O I
10.1021/acs.jpcc.9b07553
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent studies demonstrate that 2H-WS2 is an excellent candidate for further applications in the electronics, spintronics, and optoelectronics. The details of phonon scattering processes associated with the thermal properties of a material are crucial for commercial applications. Here, we report an experimental study of the temperature-dependent Raman spectra of 2H-WS2 over a wide range from 3.6 to 850 K. The nonlinear temperature-dependent behavior corresponding to the phonon anharmonicity is estimated from both the frequency and linewidth of E-2g(2), E-2g(1), and A(1g) modes. It is found that the three-phonon process is dominant in the phonon softening and linewidth broadening in the whole temperature range. The four-phonon process can be detected and is even stronger than the three-phonon process at high temperatures. The obtained E-2g(1) mode is insensitive to the anharmonic effect, whereas the E-2g(2) mode is most sensitive. The phonon anharmonicity is suggested to mainly originate from the interaction between acoustic phonon and optical phonon. Understanding the phonon anharmonicity in 2H-WS2 is helpful for further applications of nanodevices.
引用
收藏
页码:25509 / 25514
页数:6
相关论文
共 50 条
  • [31] Phonon density of states and anharmonicity of UO2
    Pang, Judy W. L.
    Chernatynskiy, Aleksandr
    Larson, Bennett C.
    Buyers, William J. L.
    Abernathy, Douglas L.
    McClellan, Kenneth J.
    Phillpot, Simon R.
    PHYSICAL REVIEW B, 2014, 89 (11):
  • [32] Phonon dispersion and anharmonicity in cubic KNbO3
    Holma, M
    Chen, H
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (10) : 1465 - 1471
  • [33] Phonon anharmonicity in silicon from 100 to 1500 K
    Kim, D. S.
    Smith, H. L.
    Niedziela, J. L.
    Li, C. W.
    Abernathy, D. L.
    Fultz, B.
    PHYSICAL REVIEW B, 2015, 91 (01)
  • [34] Phonon anharmonicity in Cu-based layered thiophosphates
    Rao, Rahul
    Susner, Michael A.
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [35] Phonon anharmonicity: a pertinent review of recent progress and perspective
    Wei, Bin
    Sun, Qiyang
    Li, Chen
    Hong, Jiawang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (11)
  • [36] The Effect of Phonon Anharmonicity on the Thermodynamic Properties of Nonmetallic Solid
    V. Yu. Bodryakov
    A. A. Povzner
    I. V. Safonov
    High Temperature, 2005, 43 : 859 - 869
  • [37] The influence of phonon anharmonicity on thermal and elastic properties of neptunium
    Filanovich, A.
    Povzner, A.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 437 (1-3) : 102 - 106
  • [38] The effect of phonon anharmonicity on the thermophysical and elastic properties of palladium
    Povzner, A. A.
    Filanovich, A. N.
    Koneva, E. S.
    HIGH TEMPERATURE, 2010, 48 (03) : 358 - 362
  • [39] Effect of phonon anharmonicity on the thermophysical and elastic properties of platinum
    A. A. Povzner
    A. N. Filanovich
    High Temperature, 2011, 49 : 674 - 678
  • [40] Pressure measurements of TO-phonon anharmonicity in isotopic ZnS
    Tallman, RE
    Ritter, TM
    Weinstein, BA
    Cantarero, A
    Serrano, J
    Lauck, R
    Cardona, M
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2004, 241 (03): : 491 - 494