Phonon Anharmonicity of Tungsten Disulfide

被引:14
|
作者
Peng, Ya-Kang [1 ,2 ,3 ]
Cao, Zi-Yu [3 ]
Chen, Liu-Cheng [3 ]
Dai, Ning [1 ]
Sun, Yan [1 ]
Chen, Xiao-Jia [3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 41期
基金
国家重点研发计划;
关键词
DEPENDENT RAMAN-SPECTROSCOPY; TRANSITION-METAL DICHALCOGENIDES; ELECTRONIC-PROPERTIES; TEMPERATURE; SCATTERING; MOS2; SHIFTS;
D O I
10.1021/acs.jpcc.9b07553
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent studies demonstrate that 2H-WS2 is an excellent candidate for further applications in the electronics, spintronics, and optoelectronics. The details of phonon scattering processes associated with the thermal properties of a material are crucial for commercial applications. Here, we report an experimental study of the temperature-dependent Raman spectra of 2H-WS2 over a wide range from 3.6 to 850 K. The nonlinear temperature-dependent behavior corresponding to the phonon anharmonicity is estimated from both the frequency and linewidth of E-2g(2), E-2g(1), and A(1g) modes. It is found that the three-phonon process is dominant in the phonon softening and linewidth broadening in the whole temperature range. The four-phonon process can be detected and is even stronger than the three-phonon process at high temperatures. The obtained E-2g(1) mode is insensitive to the anharmonic effect, whereas the E-2g(2) mode is most sensitive. The phonon anharmonicity is suggested to mainly originate from the interaction between acoustic phonon and optical phonon. Understanding the phonon anharmonicity in 2H-WS2 is helpful for further applications of nanodevices.
引用
收藏
页码:25509 / 25514
页数:6
相关论文
共 50 条
  • [21] PRESSURE DEPENDENT OPTICAL PHONON ANHARMONICITY IN GAP
    WEINSTEIN, BA
    SOLID STATE COMMUNICATIONS, 1976, 20 (10) : 999 - 1003
  • [22] Phonon anharmonicity and negative thermal expansion in SnSe
    Bansal, Dipanshu
    Hong, Jiawang
    Li, Chen W.
    May, Andrew F.
    Porter, Wallace
    Hu, Michael Y.
    Abernathy, Douglas L.
    Delaire, Olivier
    PHYSICAL REVIEW B, 2016, 94 (05)
  • [23] INFLUENCE OF PHONON ANHARMONICITY ON MELT TRANSITION IN POLYMETHYLENE
    BOYLE, FP
    HOPFINGER, AJ
    TAYLOR, PL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (03): : 462 - 462
  • [24] ANHARMONICITY EFFECTS IN THE PHONON SPECTRUM OF ANISOTROPIC CRYSTALS
    Repetsky, S. P.
    Kokailo, V. S.
    UKRAINIAN JOURNAL OF PHYSICS, 2009, 54 (04): : 377 - 382
  • [25] PHONON DISPERSION IN TUNGSTEN
    JANI, AR
    GOHEL, VB
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1976, 6 (02): : L25 - L27
  • [26] Phonon anharmonicity: a pertinent review of recent progress and perspective
    Bin Wei
    Qiyang Sun
    Chen Li
    Jiawang Hong
    Science China Physics, Mechanics & Astronomy, 2021, 64
  • [27] INFLUENCE OF ANHARMONICITY ON THE SPECTRA OF PHONON EXCITATIONS IN AMORPHOUS BODIES
    VAKARCHUK, IA
    MIGAL, VM
    TKACHUK, VM
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1992, 56 (03): : 183 - 191
  • [28] Phonon anharmonicity in bulk Td-MoTe2
    Joshi, Jaydeep
    Stone, Iris R.
    Beams, Ryan
    Krylyuk, Sergiy
    Kalish, Irina
    Davydov, Albert V.
    Vora, Patrick M.
    APPLIED PHYSICS LETTERS, 2016, 109 (03)
  • [29] THE CONTRIBUTIONS OF LATTICE ANHARMONICITY TO THE ZERO-PHONON LINEWIDTH
    CHOW, HC
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1994, 182 (02): : 493 - 507
  • [30] Effect of phonon anharmonicity on the thermophysical and elastic properties of platinum
    Povzner, A. A.
    Filanovich, A. N.
    HIGH TEMPERATURE, 2011, 49 (05) : 674 - 678