Unsupervised machine learning of topological phase transitions from experimental data

被引:50
|
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Topological quantum phase transitions retrieved through unsupervised machine learning
    Che, Yanming
    Gneiting, Clemens
    Liu, Tao
    Nori, Franco
    PHYSICAL REVIEW B, 2020, 102 (13)
  • [2] Deep learning of topological phase transitions from entanglement aspects: An unsupervised way
    Tsai, Yuan-Hong
    Chiu, Kuo-Feng
    Lai, Yong-Cheng
    Su, Kuan-Jung
    Yang, Tzu-Pei
    Cheng, Tsung-Pao
    Huang, Guang-Yu
    Chung, Ming-Chiang
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [3] Interpreting machine learning of topological quantum phase transitions
    Zhang, Yi
    Ginsparg, Paul
    Kim, Eun-Ah
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [4] Unsupervised learning of topological phase diagram using topological data analysis
    Park, Sungjoon
    Hwang, Yoonseok
    Yang, Bohm-Jung
    PHYSICAL REVIEW B, 2022, 105 (19)
  • [5] Unsupervised learning of interacting topological and symmetry-breaking phase transitions
    Kuo, En-Jui
    Dehghani, Hossein
    PHYSICAL REVIEW B, 2022, 105 (23)
  • [6] Unsupervised learning of topological phase transitions using the Calinski-Harabaz index
    Wang, Jielin
    Zhang, Wanzhou
    Hua, Tian
    Wei, Tzu-Chieh
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [7] A TOPOLOGICAL VIEW OF UNSUPERVISED LEARNING FROM NOISY DATA
    Niyogi, P.
    Smale, S.
    Weinberger, S.
    SIAM JOURNAL ON COMPUTING, 2011, 40 (03) : 646 - 663
  • [8] Unsupervised Machine Learning of Quantum Phase Transitions Using Diffusion Maps
    Lidiak, Alexander
    Gong, Zhexuan
    PHYSICAL REVIEW LETTERS, 2020, 125 (22)
  • [9] Unsupervised learning of interacting topological phases from experimental observables
    Yu, Li-Wei
    Zhang, Shun-Yao
    Shen, Pei-Xin
    Deng, Dong-Ling
    FUNDAMENTAL RESEARCH, 2024, 4 (05): : 1086 - 1091
  • [10] Topological persistence machine of phase transitions
    Quoc Hoan Tran
    Chen, Mark
    Hasegawa, Yoshihiko
    PHYSICAL REVIEW E, 2021, 103 (05)